精英家教网 > 高中数学 > 题目详情
1.已知i是虚数单位,且(1+2i)$\overline{z}$=3+i.
(1)求z;
(2)若z是关于x的方程x2+px+q=0的一个根,求实数p,q的值.

分析 (1)把已知等式变形,然后利用复数代数形式的乘除运算化简$\overline{z}$,则z可求;
(2)把1+i代入方程x2+px+q=0,化简根据复数相等即可得答案.

解答 解:(1)由(1+2i)$\overline{z}$=3+i.
得$\overline{z}=\frac{3+i}{1+2i}=\frac{(3+i)(1-2i)}{(1+2i)(1-2i)}=\frac{5-5i}{5}=1-i$,
则z=1+i;
(2)∵z=1+i是关于x的方程x2+px+q=0的一个根,
∴(1+i)2+p(1+i)+q=0,即p+q+(2+p)i=0.
∴$\left\{\begin{array}{l}{p+q=0}\\{2+p=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{p=-2}\\{q=2}\end{array}\right.$.

点评 本题考查了复数代数形式的乘除运算,考查了复数相等的条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知($\sqrt{x}$-$\frac{1}{2\root{4}{x}}$)n的展开式中,前三项的系数成等差数列.
(1)求n的值;
(2)求展开式中含x项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一元二次不等式-2x2-x+6≥0的解集为[-2,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x2-3x+lnx,则f(x)在区间[$\frac{1}{2}$,2]上的最小值为-2;当f(x)取到最小值时,x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用反证法证明命题“若abc=0,则a,b,c中至少有一个为0”时,假设正确的是(  )
A.假设a,b,c都不为0B.假设a,b,c不都为0
C.假设a,b,c至多有一个为0D.假设a,b,c都为0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10km处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站(  )
A.5 km处B.4 km处C.3  km处D.2 km处

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组抽出的号码为28,则第8组抽出的号码应是a;若用分层抽样方法,则50岁以下年龄段应抽取b人,那么a+b等于(  )
A.46B.45C.70D.69

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知Sn是等差数列{an}的前n项和,且${S_n}=-2{n^2}+15n$,
(1)求数列{an}的通项公式;
(2)n为何值时,Sn取得最大值并求其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆E的中心为坐标原点,离心率为$\frac{{\sqrt{3}}}{2}$,E的右焦点与抛物线C:y2=12x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案