精英家教网 > 高中数学 > 题目详情
6.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10km处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站(  )
A.5 km处B.4 km处C.3  km处D.2 km处

分析 求出总费用与距离x的函数解析式,利用基本不等式得出费用最小时对应的x即可.

解答 解:设仓库与车站距离为x,土地费用为y1,运输费用为y2
于是y1=$\frac{{k}_{1}}{x}$,y2=k2x,
∴$\left\{\begin{array}{l}{2=\frac{{k}_{1}}{10}}\\{8=10{k}_{2}}\end{array}\right.$,解得k1=20,k2=$\frac{4}{5}$.
设总费用为y,则y=$\frac{20}{x}+\frac{4}{5}x$≥2$\sqrt{\frac{20}{x}•\frac{4x}{5}}$=8.
当且仅当$\frac{20}{x}=\frac{4x}{5}$即x=5时取等号.
故选:A.

点评 本题考查了函数模型的应用,函数最值的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.如图为60辆汽车通过某一段公路时的时速频率分布直方图,则时速在[60,70)的汽车大约有24辆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知正三角形ABC的边长为2,AM是边BC上的高,沿AM将△ABM折起,使得二面角B-AM-C的大小为90°,此时点M到平面ABC的距离为$\frac{\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.i是虚数单位,则$\frac{2i}{1-i}$的虚部是(  )
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知i是虚数单位,且(1+2i)$\overline{z}$=3+i.
(1)求z;
(2)若z是关于x的方程x2+px+q=0的一个根,求实数p,q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.当输入x=-$\frac{π}{6}$时,如图的程序运行的结果是(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$f(x)={cos^2}x-2{cos^2}\frac{x}{2}$的最小值为(  )
A.1B.-1C.$\frac{5}{4}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.甲乙对弈,每局甲赢概率为$\frac{1}{3}$,乙赢概率为$\frac{2}{3}$,三局两胜制,则甲获胜概率为(  )
A.$\frac{7}{27}$B.$\frac{2}{9}$C.$\frac{2}{27}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,将圆O:x2+y2=4上每一个点的横坐标不变,纵坐标变为原来的$\frac{1}{2}$,得到曲线C.
(1)求曲线C的参数方程;
(2)以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,在两坐标系中取相同的单位长度,射线θ=α(ρ≥0)与圆O和曲线C分别交于点A,B,求|AB|的最大值.

查看答案和解析>>

同步练习册答案