精英家教网 > 高中数学 > 题目详情
18.函数$f(x)={cos^2}x-2{cos^2}\frac{x}{2}$的最小值为(  )
A.1B.-1C.$\frac{5}{4}$D.$-\frac{5}{4}$

分析 化函数f(x)为cosx的二次函数,由此求出f(x)的最小值.

解答 解:函数$f(x)={cos^2}x-2{cos^2}\frac{x}{2}$
=cos2x-cosx-1
=${(cosx-\frac{1}{2})}^{2}$-$\frac{5}{4}$,
当cosx=$\frac{1}{2}$,即x=2kπ±$\frac{π}{3}$,k∈Z时,
f(x)取得最小值为-$\frac{5}{4}$.
故选:D.

点评 本题考查了三角恒等变换以及余弦函数的性质和应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x3-x+2,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )
A.4x-y-2=0B.4x-y+2=0C.2x-y=0D.2x-y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x2-3x+lnx,则f(x)在区间[$\frac{1}{2}$,2]上的最小值为-2;当f(x)取到最小值时,x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10km处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站(  )
A.5 km处B.4 km处C.3  km处D.2 km处

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组抽出的号码为28,则第8组抽出的号码应是a;若用分层抽样方法,则50岁以下年龄段应抽取b人,那么a+b等于(  )
A.46B.45C.70D.69

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知i为虚数单位,复数z满足$z+zi=|\sqrt{3}-i|$,则复数z对应的点位于复平面内的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知Sn是等差数列{an}的前n项和,且${S_n}=-2{n^2}+15n$,
(1)求数列{an}的通项公式;
(2)n为何值时,Sn取得最大值并求其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7..已知函数$f(x)=\frac{1}{x}+lnx$.
(1)求函数f(x)的单调区间;
(2)试证明:${({1+\frac{1}{n}})^{n+1}}>e$(e=2.718…,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}满足a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2.
(1)求数列{an}的通项公式;
(2)当d>0时,设${b_n}=\frac{{{a_n}+4}}{2^n}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

同步练习册答案