精英家教网 > 高中数学 > 题目详情
4.已知向量$\vec m=({1,cosθ}),\vec n=({sinθ,-2})$,且$\vec m⊥\vec n$,则sin2θ+6cos2θ的值为2.

分析 $\vec m⊥\vec n$,可得$\overrightarrow{m}$$•\overrightarrow{n}$=sinθ-2cosθ=0,tanθ=2.变形为sin2θ+6cos2θ=$\frac{2sinθcosθ+6co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2tanθ+6}{ta{n}^{2}θ+1}$,即可得出.

解答 解:∵$\vec m⊥\vec n$,∴$\overrightarrow{m}$$•\overrightarrow{n}$=sinθ-2cosθ=0,
∴tanθ=2.
∴sin2θ+6cos2θ=$\frac{2sinθcosθ+6co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2tanθ+6}{ta{n}^{2}θ+1}$=$\frac{2×2+6}{{2}^{2}+1}$=2.
故答案为:2.

点评 本题考查了向量垂直与数量积的关系、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.i是虚数单位,则$\frac{2i}{1-i}$的虚部是(  )
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.甲乙对弈,每局甲赢概率为$\frac{1}{3}$,乙赢概率为$\frac{2}{3}$,三局两胜制,则甲获胜概率为(  )
A.$\frac{7}{27}$B.$\frac{2}{9}$C.$\frac{2}{27}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,且${b^2}-{(a-c)^2}=(2-\sqrt{3})ac$.
(1)求角B的大小;
(2)若数列{an}是等差数列,且a1•cos2B=1,a2=4,求{$\frac{4}{{a}_{n}{a}_{n+1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知公差不为零的等差数列{an}满足:a1=3,且a1,a4,a13成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列bn=$\frac{1}{{{a}_{n-1}}_{{a}_{n}}}$,求数列{bn}的前n项和{Tn}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.圆O的直径为BC,点A是圆周上异于B,C的一点,且|AB|•|AC|=1,若点P是圆O所在平面内的一点,且$\overrightarrow{AP}=\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{9\overrightarrow{AC}}{|\overrightarrow{AC}|}$,则$\overrightarrow{PB}•\overrightarrow{PC}$的最大值为76.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,将圆O:x2+y2=4上每一个点的横坐标不变,纵坐标变为原来的$\frac{1}{2}$,得到曲线C.
(1)求曲线C的参数方程;
(2)以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,在两坐标系中取相同的单位长度,射线θ=α(ρ≥0)与圆O和曲线C分别交于点A,B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的前n项和为Sn(Sn≠0),a1=$\frac{1}{2}$,且对任意正整数n,都有an+1+SnSn+1=0,则a1+a20=$\frac{1}{210}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知[x)表示大于x的最小整数,例如[3)=4,[-1,3)=-1,下列命题中正确的是(  )
①函数f(x)=[x)-x的值域是(0,1]
②若{an}是等差数列,则{[an)}也是等差数列
③若{an}是等比数列,则{[an)}也是等比数列
④若x∈(1,2017),则方程[x)-x=sin$\frac{π}{2}$x有1007个根.
A.B.③④C.D.①④

查看答案和解析>>

同步练习册答案