精英家教网 > 高中数学 > 题目详情
17.关于函数f(x)=cos(2x-$\frac{π}{3}$)+sin(2x+$\frac{π}{6}$),有
①y=f(x)的最大值为$\sqrt{2}$;
②y=f(x)的最小正周期是π
③y=f(x)在区间[-$\frac{π}{12}$,$\frac{13π}{24}$]上是减函数;
④直线x=$\frac{π}{6}$是函数y=f(x)的一条对称轴方程.
其中正确命题的序号是②④.

分析 利用两角差的余弦公式、两角和的正弦公式化简解析式,
由正弦函数的最大值判断①;由三角函数的周期公式求出f(x)的最小正周期,即可判断②;由x的范围求出$2x+\frac{π}{6}$的范围,由正弦函数的单调性判断③;把x=$\frac{π}{6}$代入$2x+\frac{π}{6}$计算,利用正弦函数的对称轴判断④.

解答 解:由题意得,f(x)=cos(2x-$\frac{π}{3}$)+sin(2x+$\frac{π}{6}$)
=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x+$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x
=$\sqrt{3}$sin2x+cos2x=$2sin(2x+\frac{π}{6})$,
①、当$sin(2x+\frac{π}{6})$=1时,y=f(x)取到最大值为2,①不正确;
②、由T=$\frac{2π}{ω}=\frac{2π}{2}=π$得,y=f(x)的最小正周期是π,②正确;
③、由$x∈[-\frac{π}{12},\frac{13π}{24}]$ 得,$2x+\frac{π}{6}∈[0,\frac{5π}{4}]$,
所以y=f(x)在区间[-$\frac{π}{12}$,$\frac{13π}{24}$]上不是单调函数,③不正确;
④、当x=$\frac{π}{6}$时,$2x+\frac{π}{6}=\frac{π}{2}$,
所以直线x=$\frac{π}{6}$是函数y=f(x)的一条对称轴方程,④正确,
故答案为:②④.

点评 本题考查正弦函数的图象与性质,两角差的余弦公式、两角和的正弦公式等,以及代入法的应用,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{x^2},x≥0\\-{x^2},x<0\end{array}$,若f(a2)<f(2-a),则实数a的取值范围是(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{{\begin{array}{l}{ln(x+1)}&{(x≥0)}\\{{e^x}-1}&{(x<0)}\end{array}}$,若函数y=f(x)-kx恒有一个零点,则k的取值范围为(  )
A.k≤0B.k≤0或k≥1C.k≤0或k≥eD.k≤0或k≥$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知各项均为整数的数列{an}满足an2≤1,1≤a12+a22+…+an2≤m,m,n∈N*
(1)若m=1,n=2,写出所有满足条件的数列{an};
(2)设满足条件的{an}的个数为f(n,m).
①求f(2,2)和f(2016,2016);
②若f(m+1,m)>2016,试求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若-1<α<3,-4<β<2,则α-|β|的取值范围是(  )
A.(1,4)B.(-5,1)C.(-1,3)D.(-5,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=(sinx+cosx)2+cos2x的单调增区间为$[kπ-\frac{3π}{8},kπ+\frac{π}{8}](k∈Z)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设Sn为等比数列{an}的前n项和,若8a3-a6=0,则$\frac{{S}_{3}}{{S}_{6}}$=$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设数列{an}是单调递减的等差数列,前三项的和为12,前三项的积为28,则a1=(  )
A.1B.4C.7D.1或7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知随机变量X服从正态分布N(1,4),P(-1<X<3)=0.6826,则下列结论正确的是(  )
A.P(X<-1)=0.6587B.P(X>3)=0.1587C.P(-1<X<1)=0.3174D.P(1<X<3)=0.1826

查看答案和解析>>

同步练习册答案