精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
2
+y2=1,其右焦点为F,直线l经过点F与椭圆交于A,B
两点,且|AB|=
4
2
3

(1)求直线l的方程;
(2)求△OAB的面积.
分析:(1)由已知易得右焦点的坐标为F(1,0),分斜率不存在时和斜率存在时,两种情况讨论,结合韦达定理和弦长公式,要求出直线l的方程;
(2)由点到直线距离公式,求出原点O到直线AB的距离,代入三角形面积公式,可得△OAB的面积.
解答:解:(1)∵椭圆的标准方程为:
x2
2
+y2=1

故c=1
则其右焦点的坐标为F(1,0)
当斜率不存在时,直线l的方程为x=1
此时|AB|=
2b2
a
=
2
,不符合条件;
当斜率存在时,设直线l的方程为y=k(x-1),A(x1,y1),B(x2,y2),
则有
y=k(x-1)
x2
2
+y2=1
得:(1+2k2)x2-4k2x+2k2-2=0
则x1+x2=
4k2
1+2k2
,x1x2=
2k2-2
1+2k2

∴|AB|=
1+k2
(
4k2
1+2k2
)2-4×
2k2-2
1+2k2
=
1+k2
1+2k2
×
8
=
4
2
3

解得k=±1
故直线l的方程为:x+y-1=0或x-y-1=0
(2)原点到直线x+y-1=0或x-y-1=0的距离d=
1
2
=
2
2

故△OAB的面积S=
1
2
×
4
2
3
×
2
2
=
2
3
点评:本题考查的知识点是直线与圆锥的曲线的关系,点到直线的距离公式,联立方程+韦达定理+设而不求是解答直线与圆锥曲线位置关系的三大法宝.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x22
+y2=1
的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,且BC∥x轴?求证直线AC经过线段EF的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x22
+y2=1
的左焦点为F,O为坐标原点.
(I)求过点O、F,并且与椭圆的左准线l相切的圆的方程;
(II)设过点F的直线交椭圆于A、B两点,并且线段AB的中点在直线x+y=0上,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
2
+y2=1
的左焦点为F,O为坐标原点.过点F的直线l交椭圆于A、B两点.
(1)若直线l的倾斜角α=
π
4
,求|AB|;
(2)求弦AB的中点M的轨迹方程;
(3)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,
线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x22
+y2=1的左、右焦点为F1、F2,上顶点为A,直线AF1交椭圆于B.如图所示沿x轴折起,使得平面AF1F2⊥平面BF1F2.点O为坐标原点.
( I ) 求三棱锥A-F1F2B的体积;
(Ⅱ)图2中线段BF2上是否存在点M,使得AM⊥OB,若存在,请在图1中指出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•钟祥市模拟)如图,已知椭圆
x2
2
+y2=1
内有一点M,过M作两条动直线AC、BD分别交椭圆于A、C和B、D两点,若|
AB
|2+|
CD
|2=|
BC
|2+|
AD
|2


(1)证明:AC⊥BD;
(2)若M点恰好为椭圆中心O
(i)四边形ABCD是否存在内切圆?若存在,求其内切圆方程;若不存在,请说明理由.
(ii)求弦AB长的最小值.

查看答案和解析>>

同步练习册答案