精英家教网 > 高中数学 > 题目详情
2.-630°化为弧度为-$\frac{7π}{2}$.

分析 根据π=180°,把角度制化为弧度制即可.

解答 解:∵-630°=-630×$\frac{π}{180}$=-$\frac{7π}{2}$.
∴-630°化为弧度为-$\frac{7π}{2}$.
故答案为:-$\frac{7π}{2}$.

点评 本题考查了把角度制化为弧度制的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设集合A={x∈N|$\frac{6}{3-x}$∈Z},B={(x,y)|x+y=3,x∈N,y∈N},则用列举法表示A={0,1,2,4,5,6,9},B={(0,3),(1,2),(2,1),(3,0)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.判断集合S={x|x=3m+2n,m,n∈Z}与B={5m+8n|m,n∈Z}之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)的值越大,表示接受能力越强),x表示提出和讲授概念的时间(单位:分),可以有以下公式:f(x)=$\left\{\begin{array}{l}{-0.1{x}^{2}+2.6x+43(0<x≤10)}\\{59(10<x≤16)}\\{-3x+107(16<x≤30)}\end{array}\right.$
(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟?
(2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?
(3)一个数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)数列1,0,1,0,1,0,…的通项公式是$\frac{1}{2}$+(-1)n+1•$\frac{1}{2}$
(2)数列$\frac{1}{3}$,$\frac{1}{2}$,$\frac{3}{5}$,$\frac{2}{3}$…的通项公式是$\frac{n}{n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=a2x+$\frac{b}{x}$(ab≠0),f(2)=4,则f(-2)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,首项a1=1,且对于任意n∈N+,都有nan+1=2Sn
(Ⅰ)求{an}的通项公式;
(Ⅱ)设${b_n}=\frac{1}{{{a_{n+1}}{a_n}_{+3}}}$,且数列的前n项之和为Tn,求证:${T_n}<\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,已知D是AB边上一点,若$\overrightarrow{AD}$=3$\overrightarrow{DB}$,$\overrightarrow{CD}$=$\frac{1}{4}$$\overrightarrow{CA}$+λ$\overrightarrow{CB}$,则λ等于(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.-$\frac{1}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在集合{(x,y)|0≤x≤5,且0≤y≤4}内任取一个元素,能使代数式3x+4y-12≥0的概率为$\frac{7}{10}$.

查看答案和解析>>

同步练习册答案