精英家教网 > 高中数学 > 题目详情
18.执行如图所示的程序框图,输出的S值为(  )
A.2B.$\frac{3}{2}$C.$\frac{5}{3}$D.$\frac{8}{5}$

分析 由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,
当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=$\frac{3}{2}$,
当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=$\frac{5}{3}$,
当k=3时,不满足进行循环的条件,
故输出结果为:$\frac{5}{3}$,
故选:C.

点评 本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁.为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:
感染未感染总计
服用104050
未服用203050
总计3070100
附表:
P(K2≥k)0.100.050.025
k2.7063.8415.024
参照附表,下列结论正确的是(  )
A.在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗有关”
B.在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗无关”
C.有97.5%的把握认为“小动物是否被感染与有没有服用疫苗有关”
D.有97.5%的把握认为“小动物是否被感染与有没有服用疫苗无关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.向量|$\overrightarrow{OA}$|=5,|$\overrightarrow{OB}$|=3,<$\overrightarrow{OA}$,$\overrightarrow{OB}$>=120°,则$\overrightarrow{OA}$在$\overrightarrow{OB}$上的正射影的数量为$-\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}共有5项,其中a1=0,a5=2,且|ai+1-ai|=1,i=1,2,3,4,则满足条件的不同数列的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若x∈R+,则x+$\frac{4}{x}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知关于x的一元二次方程x2-2ax+b2=0,其中a,b∈R.
(I)若a随机选自集合{0,1,2,3,4},b随机选自集合{0,1,2,3},求方程有实根的概率;
(Ⅱ)若a随机选自区间[0,4],b随机选自区间[0,3],求方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=5,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°.
(1)若$\overrightarrow{a}$⊥(k$\overrightarrow{a}$+$\overrightarrow{b}$),求实数k的值;
(2)求$\overrightarrow{a}$+2$\overrightarrow{b}$的模.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,已知cosA=$\frac{\sqrt{6}}{3}$,cosB=$\frac{2\sqrt{2}}{3}$.
(1)求cosC的值;
(2)若$\overrightarrow{CA}$•$\overrightarrow{CB}$=-6,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.“开门大吉”是某电视台推出的游戏节目,选手面对1-8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金,在一次场外调查中,发现参赛选手多数分为两个年龄段:20-30;30-40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)填写下面2×2列联表:判断是否有90%的把握认为猜对歌曲名称是否与年龄有关,说明你的理由:(下面的临界值表供参考)
P(K2≥k00.100.050.0100.005
 k02.7063.8416.6357.879
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)  
年龄/正误正确错误合计
20-30   
30-40   
合计   
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20-30岁之间的概率.(已知从6人中取3人的结果有20种)

查看答案和解析>>

同步练习册答案