精英家教网 > 高中数学 > 题目详情
已知α∈(0,
π
2
)
,方程x2sinα+y2cosα=1表示焦点在y轴上的椭圆,则α的取值范围是(  )
A、(0,
π
4
)
B、(0,
π
4
]
C、[
π
4
π
2
]
D、(
π
4
π
2
)
分析:先根据椭圆焦点在y轴上得出
1
sinα
1
cosα
,然后使cosα=sin(
π
2
)进而根据正弦函数的单调性求出α的取值范围.
解答:解:∵焦点在y轴上
1
sinα
1
cosα

∴sinα>cosα,
即sinα>sin(
π
2

∵0<α<
π
2

∴α>
π
2
,即
π
2
>α> 
π
4

故选D.
点评:本题主要考查了椭圆的标准方程的问题.即对于椭圆标准方程
x2
a2
+
y2
b2
= 1
,当焦点在x轴上时,a>b;当焦点在y轴上时,a<b.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

①已知tanα=1,α∈(0,
π
2
)
,求
2cos2
α
2
-sinα-1
2
sin(
π
4
+α)
的值;
②已知θ∈(0,
π
2
)
,且sin(
π
4
+θ)
=
3
2
,求sin(
π
4
+2θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(0,
π
2
),tan(π-α)=-
3
4
,则sinα
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0≤θ<2π,复数
i
cosθ+isinθ
>0
,则θ的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ∈(0,
π
2
)
sinθ-cosθ=
2
2
,则cos2θ=
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0≤x≤
π
2
,则函数y=cos(
π
12
-x)+cos(
12
+x)的值域是
[-
2
2
6
2
]
[-
2
2
6
2
]

查看答案和解析>>

同步练习册答案