分析 利用三角恒等变换化函数f(x)为正弦型函数,再求:
(1)函数f(x)的最小正周期和最大、最小值;
(2)求出函数f(x)的单调增区间.
解答 解:函数f(x)=2sin$\frac{x}{4}$cos$\frac{x}{4}$-2$\sqrt{3}$sin2$\frac{x}{4}$+$\sqrt{3}$
=sin$\frac{x}{2}$-2$\sqrt{3}$×$\frac{1-cos\frac{x}{2}}{2}$+$\sqrt{3}$
=sin$\frac{x}{2}$+$\sqrt{3}$cos$\frac{x}{2}$
=2sin($\frac{x}{2}$+$\frac{π}{3}$);
(1)函数f(x)的最小正周期是T=$\frac{2π}{\frac{1}{2}}$=4π,
且当$\frac{x}{2}$+$\frac{π}{3}$=$\frac{π}{2}$+2kπ,k∈Z,
即x=$\frac{π}{3}$+4kπ(k∈Z)时,f(x)取得最大值2,
当$\frac{x}{2}$+$\frac{π}{3}$=-$\frac{π}{2}$+2kπ,k∈Z,
即x=-$\frac{5π}{3}$+4kπ(k∈Z)时,f(x)取得最小值-2;
(2)令-$\frac{π}{2}$+2kπ≤$\frac{x}{2}$+$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得-$\frac{5π}{3}$+4kπ≤x≤$\frac{π}{3}$+4kπ,k∈Z;
所以函数f(x)的单调增区间是:
[-$\frac{5π}{3}$+4kπ,$\frac{π}{3}$+4kπ],k∈Z.
点评 本题考查了三角恒等变换以及正弦型函数的图象与性质的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分又不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com