精英家教网 > 高中数学 > 题目详情
7.已知等差数列{an}的前n项和为Sn,a10=30,a15=40
(1)求通项an
(2)若Sn=210,求n.

分析 (1)由等差数列通项公式列出方程组,求出首项和公差,由此能求出an
(2)求出Sn=n2+11n,由此能求出n.

解答 解:(1)设等差数列{an}首项为a1,公差为d,依题意可得,
$\left\{\begin{array}{l}{{a}_{10}={a}_{1}+9d=30}\\{{a}_{15}={a}_{1}+14d=40}\end{array}\right.$,….(2分)
解之得$\left\{\begin{array}{l}{{a}_{1}=12}\\{d=2}\end{array}\right.$,….(4分)
∴an=a1+(n-1)d=12+(n-1)×2=2n+10.…..(5分)
(2)由(1)知:
Sn=na1+$\frac{n(n-1)d}{2}$=12n+$\frac{n(n-1)×2}{2}$=n2+11n,…(7分)
∵Sn=210,n2+n=210,解之得n=10或n=-21.(舍去)…..(9分)
∴n=10.…(10分)

点评 本题考查等差数列的通项公式和项数的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是两个单位向量,其夹角为θ,若向量$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,|$\overrightarrow{a}$|=1,则θ=(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的图象与x轴的交点中,相邻两个交点之间的距离为$\frac{π}{2}$,且图象上一个最低点为M($\frac{2π}{3}$,-2).则f(x)的解析式为f(x)=2sin(2x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在复平面上,复数$\frac{2+i}{i}$的共轭复数对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在正方体ABCD-A1B1C1D1中.
(Ⅰ)证明:BD1⊥A1D;
(Ⅱ)求$\overrightarrow{B{C}_{1}}$与$\overrightarrow{AC}$夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知某正四面体的内切球体积是1,则该正四面体的外接球的体积是(  )
A.27B.16C.9D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sin$\frac{x}{4}$cos$\frac{x}{4}$-2$\sqrt{3}$sin2$\frac{x}{4}$+$\sqrt{3}$.
(1)求f(x)的最小正周期及最值;
(2)求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[-$\frac{π}{6}$,$\frac{5π}{24}}$]上的最大值和最小值以及取得最大值和最小值时自变量的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和Sn=1-an,其中n∈N*
(I)求{an}的通项公式;
(II)若bn=nan,求{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案