【题目】已知椭圆
的左、右焦点分别为
,
,过点
作直线
,
分别与椭圆
交于
,
及
,
点,若
,
的周长为8.
(1)求椭圆
的方程;
(2)求四边形
面积的最小值.
科目:高中数学 来源: 题型:
【题目】如图所示,在平行四边形ABCD中,
,
,
,点E是CD边的中点,将
沿AE折起,使点D到达点P的位置,且
.
![]()
(1)求证;平面
平面ABCE;
(2)求点E到平面PAB的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1所示,在矩形
中,
,
,
为
中点,将
沿
折起,使点
到点
处,且平面
平面
,如图2所示.
![]()
![]()
(1)求证:
:
(2)在棱
上取点
,使平面
平面
,求平面
与
所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.(
为自然对数的底数)
(1)设
;
①若函数
在
处的切线过点
,求
的值;
②当
时,若函数
在
上没有零点,求
的取值范围.
(2)设函数
,且
,求证:当
时,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
为椭圆
的左、右顶点,
为其右焦点,
是椭圆
上异于
,
的动点,且
面积的最大值为
.
(1)求椭圆
的方程及离心率;
(2)直线
与椭圆在点
处的切线交于点
,当点
在椭圆上运动时,求证:以
为直径的圆与直线
恒相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为矩形,
,侧面
为等边三角形且垂直于底面
,
是
的中点.
(1)在棱
上取一点
使直线
∥平面
并证明;
(2)在(1)的条件下,当棱
上存在一点
,使得直线
与底面
所成角为
时,求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
在平面直角坐标系
下的参数方程为
(
为参数),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系.
(1)求曲线
的普通方程及极坐标方程;
(2)直线
的极坐标方程是
,射线
:
与曲线
交于点
与直线
交于点
,求线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在边长为2的等边三角形
中,点
分别是边
上的点,满足
且
,(
),将
沿直线
折到
的位置.在翻折过程中,下列结论不成立的是( )
A.在边
上存在点
,使得在翻折过程中,满足
平面![]()
B.存在
,使得在翻折过程中的某个位置,满足平面
平面![]()
C.若
,当二面角
为直二面角时,![]()
D.在翻折过程中,四棱锥
体积的最大值记为
,
的最大值为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有人收集了七月份的日平均气温
(摄氏度)与某次冷饮店日销售额
(百元)的有关数据,为分析其关系,该店做了五次统计,所得数据如下:
日平均气温 | 31 | 32 | 33 | 34 | 35 |
日销售额 | 5 | 6 | 7 | 8 | 10 |
由资料可知,
关于
的线性回归方程是
,给出下列说法:
①
;
②日销售额
(百元)与日平均气温
(摄氏度)成正相关;
③当日平均气温为
摄氏度时,日销售额一定为
百元.
其中正确说法的序号是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com