精英家教网 > 高中数学 > 题目详情
如图所示,一条直角走廊宽为a米.现有一转动灵活的平板车,其平板面为矩形,它的宽为b(0<b<a)米.
(1)若平板车卡在直角走廊内,且∠CAB=θ,试求平板面的长l.
(2)若平板车要想顺利通过直角走廊,其长度不能超过多少米?
考点:已知三角函数模型的应用问题
专题:综合题,三角函数的求值
分析:(1)设矩形为ABEF,直线EF分别交直线AC,BC于M,N,过点D作DP⊥AC于P,过点D作DQ⊥BC于Q,求出DM,DN,MF,EN,即可求平板面的长l.
(2)换元,确定函数的单调性,即可得出结论.
解答: 解:(1)如图,设矩形为ABEF,直线EF分别交直线AC,BC于M,N,过点D作DP⊥AC于P,过点D作DQ⊥BC于Q,则DM=
a
sinθ
,DN=
a
cosθ
MF=
b
tanθ
,EN=btanθ

所以l=DM+DN-MF-EN=
a
sinθ
+
a
cosθ
-btanθ-
b
tanθ
=
a(sinθ+cosθ)-b
sinθcosθ

(2)设t=sinθ+cosθ=
2
sin(θ+
π
4
)∈(1,
2
]

l=
2at-2b
t2-1
=
2a
t+1
+
2a-2b
t2-1

因为函数y=
2a
t+1
y=
2a-2b
t2-1
在区间(1,
2
]
上均为减函数
所以l=
2at-2b
t2-1
=
2a
t+1
+
2a-2b
t2-1
(1,
2
]
上单调递减
所以lmin=
2a
2
+1
+2a-2b=2
2
a-2b

故平板车的长度不能超过2
2
a-2b
点评:本题考查利用数学知识解决实际问题,考查三角函数知识的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z=
m+2i
3-4i
的虚部为0,则实数m的值为(  )
A、
8
3
B、
3
2
C、-
8
3
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
cos(2x-
3
)+2sin2(x-
π
12
),钝角△ABC(角A、B、C所对的边长分别为 a、b、c)的角B满足f(B)=1.
(1)求函数f(x)的单调递增区间;
(2)若b=3,c=3
3
,求B、a.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校内有一块以O为圆心,R(R为常数,单位为米)为半径的半圆形(如图)荒地,该校总务处计划对其开发利用,其中弓形BCDB区域(阴影部分)用于种植学校观赏植物,△OBD区域用于种植花卉出售,其余区域用于种植草皮出售.已知种植学校观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元.
(1)设∠BOD=θ(单位:弧度),用θ表示弓形BCDB的面积S=f(θ);
(2)如果该校总务处邀请你规划这块土地,如何设计∠BOD的大小才能使总利润最大?并求出该最大值.
(参考公式:扇形面积公式S=
1
2
R2θ=
1
2
Rl,l表示扇形的弧长)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x+m,g(x)=x3-3ax2+2bx,且函数g(x)=x3-3ax2+2bx在x=1处的切线方程为y=-1,
(1)求a,b的值;
(2)若对于任意x1∈[0,2],总存在x2∈[0,2]使得f(x1)<g(x2)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若存在x0∈D,对任意的x∈D,都有f(x)≥f(x0)或者f(x)≤f(x0),则称f(x0)为函数f(x)在区间D上的“下确界”或“上确界”.
(Ⅰ)求函数f(x)=ln(2-x)+x2在[0,1]上的“下确界”;
(Ⅱ)若把“上确界”减去“下确界”的差称为函数f(x)在D上的“极差M”,试求函数F(x)=x|x-2a|+3(a>0)在[1,2]上的“极差M”;
(Ⅲ)类比函数F(x)的“极差M”的概念,请求出G(x,y)=(1-x)(1-y)+
x
1+y
+
y
1+x
在D={(x,y)|x,y∈[0,1]}上的“极差M”.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商店商品每件成本10元,若售价为25元,则每天能卖出288件,经调查,如果降低价格,销售量可以增加,且每天多卖出的商品件数t与商品单价的降低值x(单位:元,0≤x≤15)的关系是t=6x2
(1)将每天的商品销售利润y表示成x的函数;
(2)如何定价才能使每天的商品销售利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
-
2x
4x+1

(1)判断函数f(x)的奇偶性;
(2)判断并证明函数f(x)在(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1+x)•(1+
x
)6
的展开式中含x3项的系数为
 
.(用数字作答)

查看答案和解析>>

同步练习册答案