精英家教网 > 高中数学 > 题目详情
已知函数.
(1)当时,求函数的极值;
(2)求函数的单调区间;
(3)是否存在实数,使函数上有唯一的零点,若有,请求出的范围;若没有,请说明理由.
(1),无极大值;(2)见解析;(3)存在,.

试题分析:(1)先找到函数的定义域,在定义域内进行作答,在条件下求出函数的导函数,根据函数的单调性与导数的关系,判断函数的极值;(2)先求出函数的导函数,其导函数中含有参数,所以要进行分类讨论,对分三种情况进行讨论,分别求出每种情况下的函数的单调增区间和单调减区间;(3)结合(2)中的结果,找到函数的极值点,要满足题中的要求,那么,解不等式,在的范围内求解.
试题解析:(1) 函数的定义域是,       1分
时,
所以上递减,在上递增,
所以函数的极小值为,无极大值;                    4分
(2)定义域,           5分
①当,即时,由,得的增区间为;由,得的减区间为;                6分
②当,即时,由,得的增区间为;由,得的减区间为;        7分
③当,即时,由,得的增区间为;由,得的减区间为;        8分
综上,时,的增区间为,减区间为
时,的增区间为,减区间为
时,的增区间为,减区间为;       9分
(3)当时,由(2)知的极小值为,而极大值为
由题意,函数的图象与上有唯一的公共点,
所以,,结合
解得.           13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

函数,数列,满足0<<1, ,数列满足
(Ⅰ)求函数的单调区间;
(Ⅱ)求证:0<<1;
(Ⅲ)若,则当n≥2时,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若试确定函数的单调区间;
(Ⅱ)若,且对于任意恒成立,求实数的取值范围;
(Ⅲ)令若至少存在一个实数,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
⑴求函数的单调区间;
⑵求函数的值域;
⑶已知恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)如果对于任意的总成立,求实数的取值范围;
(Ⅲ)设函数,过点作函数图象的所有切线,令各切点得横坐标构成数列,求数列的所有项之和的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中为常数。
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)若函数有极值点,求的取值范围及的极值点。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)试问的值是否为定值?若是,求出该定值;若不是,请说明理由;
(2)定义,其中,求
(3)在(2)的条件下,令.若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数是f(x)的导函数,若,,则=           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,则函数的图象在点处的切线方程是          .

查看答案和解析>>

同步练习册答案