精英家教网 > 高中数学 > 题目详情
4.正整数a、b、c是等腰三角形的三边长,并且a+bc+b+ca=24,则这样的三角形有(  )
A.1个B.2个C.3个D.4个

分析 先将a+bc+b+ca=24 可以化为 (a+b)(c+1)=24,然后根据24分解为大于等于2的两个正整数的乘积有几种组合讨论是否符合题意即可得出答案.

解答 解:a+bc+b+ca=24 可以化为 (a+b)(c+1)=24,其中a,b,c都是正整数,并且其中两个数相等,
令a+b=A,c+1=C 则A,C为大于或等于2的正整数,
那么24分解为大于等于2的两个正整数的乘积有几种组合2×12,3×8,4×6,6×4,8×3,12×2,
①、A=2,C=12时,c=11,a+b=2,无法得到满足等腰三角形的整数解;
②、A=3,C=8时,c=7,a+b=3,无法得到满足等腰三角形的整数解;
③、A=4,C=6时,c=5,a+b=4,无法得到满足等腰三角形的整数解;
④、A=6,C=4时,c=3,a+b=6,可以得到a=b=c=3,可以组成等腰三角形;
⑤、A=8,C=3时,c=2,a+b=8,可得a=b=4,c=2,可以组成等腰三角形,a=b=4是两个腰;
⑥、A=12,C=2时,可得 a=b=6,c=1,可以组成等腰三角形,a=b=6是两个腰.
∴一共有3个这样的三角形.
故选:C.

点评 本题考查数的整除性及等腰三角形的知识,难度一般,在解答本题时将原式化为因式相乘的形式及将24分解为大于等于2的两个正整数的乘积有几种组合是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.对于定义在R上的函数f(x),若f(0)=1,且对任意的x∈R,都有f(x+1)-f(x)=2,则$\frac{2}{f(0)f(1)}$+$\frac{2}{f(1)f(2)}$+…+$\frac{2}{f(2014)f(2015)}$=$\frac{4030}{4031}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若平行四边形ABCD的三个顶点为A(-1,3),B(3,4),C(2,2),求顶点D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在直角三角形ABC中,∠C=90°,AB=2,AC=1,若$\overrightarrow{AD}=\frac{1}{2}\overrightarrow{AB}$,则$\overrightarrow{CD}$•$\overrightarrow{CB}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.复平面内有A,B两点,点A对应的复数为2+i,向量$\overrightarrow{AB}$对应的复数为2+3i,则点B对应的复数是4+4i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}的通项为an=log(n+1)(n+2)(n∈N*),我们把使乘积a1•a2•a3•…•an为整数的n叫做“优数”,则在(0,2015]内的所有“优数”的和为(  )
A.1024B.2012C.2026D.2036

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l:x-my+$\sqrt{3}$m=0上存在点M满足与两点A(-1,0),B(1,0)连线的斜率kMA与kMB之积为3,则实数m的取值范围是(  )
A.$[{-\sqrt{6},\sqrt{6}}]$B.$({-∞,-\frac{{\sqrt{6}}}{6}})$∪$({\frac{{\sqrt{6}}}{6},+∞})$C.$({-∞,-\frac{{\sqrt{6}}}{6}}]$∪$[{\frac{{\sqrt{6}}}{6},+∞})$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.阅读下面的程序:
INPUT  N
I=1
S=1
WHILE 1<=N
S=S*I
I=I+1
WEND
PRINT S
END
上面的程序在执行时如果输入5,那么输出的结果为120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.奥运会的圣火采集器是一个凹面镜,这个凹面镜与其轴截面的交线是一条抛物线,如图1所示,太阳光经凹面镜反射会聚于点火点,把火炬放在点火点处,即可被点燃.已知凹面镜的镜口直径是a,镜深是b.求点火点到凹面镜的顶点的距离.

查看答案和解析>>

同步练习册答案