| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 先将a+bc+b+ca=24 可以化为 (a+b)(c+1)=24,然后根据24分解为大于等于2的两个正整数的乘积有几种组合讨论是否符合题意即可得出答案.
解答 解:a+bc+b+ca=24 可以化为 (a+b)(c+1)=24,其中a,b,c都是正整数,并且其中两个数相等,
令a+b=A,c+1=C 则A,C为大于或等于2的正整数,
那么24分解为大于等于2的两个正整数的乘积有几种组合2×12,3×8,4×6,6×4,8×3,12×2,
①、A=2,C=12时,c=11,a+b=2,无法得到满足等腰三角形的整数解;
②、A=3,C=8时,c=7,a+b=3,无法得到满足等腰三角形的整数解;
③、A=4,C=6时,c=5,a+b=4,无法得到满足等腰三角形的整数解;
④、A=6,C=4时,c=3,a+b=6,可以得到a=b=c=3,可以组成等腰三角形;
⑤、A=8,C=3时,c=2,a+b=8,可得a=b=4,c=2,可以组成等腰三角形,a=b=4是两个腰;
⑥、A=12,C=2时,可得 a=b=6,c=1,可以组成等腰三角形,a=b=6是两个腰.
∴一共有3个这样的三角形.
故选:C.
点评 本题考查数的整除性及等腰三角形的知识,难度一般,在解答本题时将原式化为因式相乘的形式及将24分解为大于等于2的两个正整数的乘积有几种组合是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1024 | B. | 2012 | C. | 2026 | D. | 2036 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-\sqrt{6},\sqrt{6}}]$ | B. | $({-∞,-\frac{{\sqrt{6}}}{6}})$∪$({\frac{{\sqrt{6}}}{6},+∞})$ | C. | $({-∞,-\frac{{\sqrt{6}}}{6}}]$∪$[{\frac{{\sqrt{6}}}{6},+∞})$ | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com