精英家教网 > 高中数学 > 题目详情
3.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足sinA+$\sqrt{3}$cosA=2.
(1)求A的大小;
(2)现给出三个条件①B=45°;②a=2;③c=$\sqrt{3}$b.试从中选出两个可以确定△ABC的条件,写出你的选择并以此为依据求△ABC的面积.(注:只能写出一个选定方案即可,选多种方案以第一种方案计分)

分析 (1)由sinA+$\sqrt{3}$cosA=2.利用和差公式即可得出.
(2)通过分类讨论,利用正弦定理余弦定理、三角形面积计算公式即可得出.

解答 解:(1)$sinA+\sqrt{3}cosA=2⇒2sin(A+\frac{π}{3})⇒2⇒A+\frac{π}{3}=\frac{π}{2}$,
∴$A=\frac{π}{6}$.
(2)选①②:$B=\frac{π}{4}$,$A=\frac{π}{6}$,a=2,$c=π-\frac{π}{6}-\frac{π}{4}=\frac{7π}{12}$,
∴$\frac{a}{sinA}=\frac{b}{sinB}⇒\frac{2}{{\frac{1}{2}}}=\frac{b}{{\frac{{\sqrt{2}}}{2}}}⇒b=2\sqrt{2}$.${S_{△ABC}}=\frac{1}{2}absinC=\frac{1}{2}×2×2\sqrt{2}×\frac{{\sqrt{6}+\sqrt{2}}}{4}$=$\sqrt{3}+1$.
选①③:b2+c2-2bccosA=a2,∴b2+3b2-3b2=4,解得b=2,c=2$\sqrt{3}$.
∴S=$\frac{1}{2}$bcsinA=$\sqrt{3}$.
若选择②③,由$c=\sqrt{3}b$得:$sinC=\sqrt{3}sinB=\frac{{\sqrt{6}}}{2}>1$,不成立,这样的三角形不存在.

点评 本题考查了和差公式、正弦定理余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.角θ的终边过点(sin(α-$\frac{π}{3}$),$\sqrt{3}$),且sin2θ≤0,则α的可能取值范围是(  )
A.[-$\frac{2π}{3}$,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{4π}{3}$]C.[-$\frac{5π}{3}$,-$\frac{2π}{3}$]D.[0,π]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=$\frac{3x+1}{2-x}$的值域是{y|y≠-3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设p:关于x的方程x2-4x+2a=0在区间[0,5]上有两相异实根;q:“至少存在一个实数x∈[1,2],使不等式x2+2ax+2-a>0成立”.若“¬p∧q”为真命题,参数a的取值范围为(-3,0)∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填入部分数据,如表:
(1)请将上表数据补充完整,填写在答题卡相应的位置,并求f(x)的解析式;
(2)将函数f(x)的图象上每一点的纵坐标缩短到原来的$\frac{1}{2}$倍,横坐标不变,得到函数g(x)的图象.试求g(x)在区间[π,$\frac{5π}{2}$]上的最值.
ωx+φ 0 $\frac{π}{2}$ π $\frac{3π}{2}$ 2π
 x  2π   $\frac{13π}{2}$
 f(x) 0 4 -4 0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l过点P(3,4)且与直线2x-y-5=0垂直,则直线l的方程为x+2y-11=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=Asin($\overline{ω}$x+φ)(A>0,$\overline{ω}$>0,0<φ<π)在一个周期内的图象如图,此函数的解析式为(  )
A.y=2sin(2x+$\frac{2π}{3}$)B.y=2sin(2x+$\frac{π}{3}$)C.y=2sin($\frac{x}{2}$-$\frac{π}{3}$)D.y=2sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(x+1)lnx-a(x-1).
(1)当a=4求曲线y=f(x)在(1,f(1))处的切线方程;
(2)若 x>1 时,f(x)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(1+sin2x,sinx-cosx),$\overrightarrow{b}$=(1,sinx+cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的最大值及相应的x的值;
(2)若f(θ)=$\frac{8}{5}$,求cos2($\frac{π}{4}$-2θ)的值.

查看答案和解析>>

同步练习册答案