精英家教网 > 高中数学 > 题目详情
13.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:

他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是(  )
A.36B.45C.99D.100

分析 根据图形观察归纳猜想出两个数列的通项公式,再根据通项公式的特点排除,即可求得结果.

解答 解:由图形可得三角形数构成的数列通项an=$\frac{1}{2}$n(n+1),
同理可得正方形数构成的数列通项bn=n2
则由bn=n2(n∈N+)可排除B,C,
由$\frac{1}{2}$n(n+1)=100,即n(n+1)=200,无正整数解,故排除D
故选A.

点评 考查学生观察、分析和归纳能力,并能根据归纳的结果解决分析问题,注意对数的特性的分析,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.二项式(a+b)2n的展开式的项数是(  )
A.2nB.2n+1C.2n-1D.2(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:b2017是数列{an}中的第5044项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中,真命题的是(  )
A.?x0∈R,x02>0B.?x∈R,-1<sinx<1C.?x0∈R,2xo<0D.?x∈R,tanx=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC的外接圆的半径为$\sqrt{2}$,内角A、B、C的对边分别为a、b、c,向量$\overrightarrow m=(sinA-sinC,b-a)$,$\overrightarrow n=(sinA+sinC,\frac{{\sqrt{2}}}{4}sinB)$,且$\overrightarrow m⊥\overrightarrow n$.
(I)求角C;
(II)求△ABC的面积S的最大值,并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设a>0,b>1,若a+b=2,则$\frac{3}{a}+\frac{1}{b-1}$的最小值为4+2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(1)已知$cos({\frac{5}{2}π-θ})=\frac{1}{3}$,
求$\frac{sin(π+θ)}{sinθ[sin(π-θ)-1]}+\frac{sin(θ-2π)}{{cos(θ+\frac{3}{2}π)sin(θ-π)-cos(θ-\frac{3}{2}π)}}$的值.
(2)已知$\frac{sinα}{sinα-cosα}=-1$,求$\frac{{{{sin}^2}α+2sinαcosα}}{{2{{sin}^2}α+1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-$\frac{1}{2}a{x^2}$+1.
(I)证明:曲线y=f(x)在x=1处的切线恒过定点,并求出该定点的坐标;
(II)若关于x的不等式f(x)≤(a-1)x恒成立,求整数a的最小值.

查看答案和解析>>

科目:高中数学 来源:2017届湖北省协作校高三联考一数学(文)试卷(解析版) 题型:解答题

:实数满足不等式:函数无极值点.

(1)若“”为假命题,“”为真命题,求实数的取值范围;

(2)已知“”为真命题,并记为,且,若的必要不充分条件,求正整数的值.

查看答案和解析>>

同步练习册答案