精英家教网 > 高中数学 > 题目详情
16.已知集合A={x|a≤x≤a+4},B={x|x>1 或x<-6}.
(1)若A∩B=∅,求a的取值范围;
(2)若A∪B=B,求a的取值范围.

分析 (1)根据A∩B=∅,建立关系求解a的取值范围.
(2)根据A∪B=B,建立关系求解a的取值范围.

解答 解:(1)集合A={x|a≤x≤a+4},B={x|x>1 或x<-6}.
∵A∩B=∅,
∴必须满足$\left\{\begin{array}{l}{-6≤a}\\{a+4≤1}\end{array}\right.$,
解得:-6≤a≤-3,
故当A∩B=∅,实数a的取值范围实[-6,-3].
(2)∵A∪B=B,
可知A⊆B
则有a+4<-6或a>1,
解得:a<-10或a>1.
故当A∪B=B,实数a的取值范围实(-∞,-10)∪(1,+∞).

点评 本题考查了集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某种商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系p=$\left\{\begin{array}{l}{t+20,0<t<25,t∈{N}^{*}}\\{-t+70,25≤t≤30,t∈{N}^{*}}\end{array}\right.$
该商品的日销售量Q(件)时间t(天)的函数关系Q=-t+40(0<t≤30,t∈N*
求该商品的日销售额的最大值,并指出日销售额最大一天是30天中的第几天?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)满足f(-x)=f(x),当 a,b∈(-∞,0]时,总有$\frac{f(a)-f(b)}{a-b}$>0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是(-∞,$-\frac{1}{3}$)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数a,b分别是方程x+lgx=6,x+10x=6的解,函数f(x)=$\left\{\begin{array}{l}{x^2}+(a+b)x+2,x≤0\\ 2,x>0\end{array}$,则关于x的方程f(x)=x的解的个数是(  )
A.3B.2C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点$(\sqrt{2},0)$,且焦距为2.
(1)求椭圆C的方程;
(2)若A为椭圆的下顶点,经过点(1,1)的直线与椭圆C交于不同两点M,N(均异于点A),证明:直线AM与AN的斜率之和为定值,并求出定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合M={x∈R|x≤5},a=2,则(  )
A.a∉MB.a∈MC.{a}∈MD.{a}∉M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若函数f(x)=ax+b的零点是2,则函数g(x)=bx2-ax的零点是x=0,或x=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)的导函数f′(x)=2+sinx,且f(0)=-1,数列{an}是以$\frac{π}{4}$为公差的等差数列,若f(a2)+f(a3)+f(a4)=3π,则$\frac{{a}_{2014}}{{a}_{2}}$=(  )
A.2016B.2015C.2014D.1013

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-5|+|x-3|.
(1)求函数f(x)的最小值m;
(2)若正实数a,b满足$\frac{1}{a}$+$\frac{1}{b}$=$\sqrt{3}$,求证:$\frac{1}{{a}^{2}}$+$\frac{2}{{b}^{2}}$≥m.

查看答案和解析>>

同步练习册答案