精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=log2(4x+1)+kx,(k∈R)是偶函数,则k的值为-1.

分析 根据偶函数的定义f(-x)=f(x),列出方程,利用对数的运算法则,求出k的值.

解答 解:∵函数f(x)=log2(4x+1)+kx,(k∈R)是偶函数,
∴f(-x)=f(x),
即log2(4-x+1)+k(-x)=log2(4x+1)+kx,
∴log2(4-x+1)-log2(4x+1)=2kx,
化简得-2x=2kx,
即(2k+2)x=0;
∴2k+2=0,
解得k=-1.
故答案为:-1.

点评 本题考查了对数函数的性质与应用问题,也考查了偶函数的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知,如图所示,在梯形ABCD中,AD∥BC∥EF,对角线DB与AC交于点O,与EF分别交于点H、G,求证:EH=GF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x${e}^{{x}^{2}-ax}$,x∈(0,+∞),其中e=2.71828…是自然对数的底数,a∈R.
(1)若a=3,求函数f(x)的极值;
(2)设g(x)=ln[$\frac{1}{{x}^{2}}$f(x)],若g(x)在[1,+∞)单调递增,求a的范围;
(3)求证:当n∈N,n>1时,$\frac{1}{ln2}$+$\frac{1}{ln3}$+$\frac{1}{ln4}$+…+$\frac{1}{lnn}$>$\frac{n-1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知α∈($\frac{3}{2}$π,2π),求$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC,A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,求点D和向量$\overrightarrow{AD}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,PD⊥平面ABCD,AD⊥DC,AD∥BC,PD:DC:BC=1:1:$\sqrt{2}$.
(1)若AD=$\frac{1}{2}$BC,E为PC中点,求证:DE∥平面PAB;
(2)设PD=a,且二面角A-PB-C的大小为$\frac{π}{3}$,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(重点中学做)甲乙两个人参加射击训练,射击一次中靶的概率分别是p1,p2,其中$\frac{1}{{p}_{1}}$,$\frac{1}{{p}_{2}}$是函数f(x)=$\frac{1}{3}$x3-$\frac{5}{2}$x2+mx(x∈R)的两极值点,函数g(x)=sinx-2x+2在区间[0,2π]上的最大值为$\frac{1}{{p}_{1}}$.
(1)求p1,p2的值;
(2)两人各射击1次,求两人中至少中靶1次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等比数列{an}中,a2=2,a5=$\frac{1}{4}$,则公比q=(  )
A.-$\frac{1}{2}$B.-2C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线a∥b,a,b与平面M斜交,a?α,b?β,且α⊥平面M,β⊥平面M,求证:α∥β

查看答案和解析>>

同步练习册答案