精英家教网 > 高中数学 > 题目详情
19.将4个不同的球随机地放入3个不同盒子中,共有81 种放法.

分析 每放一个球为一步,每个球都有3种放法,根据分步计数原理即可求出.

解答 解:每个球都有3种放法,故有34=81种,
故答案为:81.

点评 本题考查了分步计数原理,关键是掌握分步,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知直线l1的方程为x-y+2=0,l2过点(-1,2),且l1的方向向量是l2的法向量,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.y=3cos(2x+$\frac{π}{3}$)的对称轴方程为x=-$\frac{π}{6}$+$\frac{kπ}{2}$,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=$\frac{ex}{{e}^{x}}$+3,g(x)=-2x2+ax-1nx(a∈R,e为自然对数的底数).
(1)若函数g(x)在区间($\frac{1}{4}$,2)上是单调函数,求实数a的取值范围;
(2)若对任意x∈(0,e),都有唯一的x0∈[e-4,e].使得f(x)=g(x0)+2x02成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知某几何体的三视图如图所示.求这个几何体的表面积及体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义域为R的函数f(x)满足f(-x)=-f(x+4),且当x>2时,f(x)单调递增.如果x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)的取值范围是(  )
A.(-∞,0)B.(-∞,0]C.(0,1]D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.有下列四个命题:
(1)“若x2+y2=0,则xy=0”的否命题;    (2)“若x>y,则x2>y2”的逆否命题;
(3)“若x≤3,则x2-x-6>0”的否命题;    (4)“对顶角相等”的逆命题.
其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设G为△ABC的重心,过G作直线l分别交线段AB,AC(不与端点重合)于P,Q.若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,$\overrightarrow{AQ}$=μ$\overrightarrow{AC}$
(1)求$\frac{1}{λ}$+$\frac{1}{μ}$的值;
(2)求λ•μ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线a不平行于平面α,则下列结论成立的是(  )
A.α内的所有直线都与a异面B.α内的直线都与a相交
C.α内不存在与a平行的直线D.直线a与平面α有公共点

查看答案和解析>>

同步练习册答案