精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别是a,b,c,且满足bcosC+ccosB=-3acosB
(1)求角B的余弦值;
(2)若b=
3
,求△ABC面积的最大值.
考点:余弦定理,正弦定理
专题:解三角形
分析:(1)在△ABC中,由条件利用正弦定理、诱导公式可得sinA=-3sinAcosB,由此求得cosB的值.
(2)由条件利用余弦定理、基本不等式求得 ac≤
9
8
.求出sinB的值,根据△ABC面积S=
1
2
ac•sinB,求得S的最大值.
解答: 解:(1)在△ABC中,由bcosC+ccosB=-3acosB,
利用正弦定理得sinBcosC+cosBsinC=-3sinAcosB,
即sin(B+C)=-3sinAcosB,即sinA=-3sinAcosB,求得cosB=-
1
3

(2)由b=
3
,利用余弦定理得 b2=3=a2+c2-2ac×cosB=a2+c2+
2
3
ac≥
8
3
ac,
∴ac≤
9
8

又sinB=
1-cos2B
=
2
2
3
∴△ABC面积S=
1
2
ac•sinB≤
1
2
×
9
8
×
2
2
3
=
3
2
8

即△ABC面积的最大值为
3
2
8
点评:本题主要考查正弦定理和余弦定理的应用,诱导公式、基本不等式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x-2
x+1

(1)求证:函数f(x)在(-1,+∞)上是增函数;
(2)设a>1,证明方程ax+f(x)=0没有负根.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥母线长为6,底面圆半径长为4,点M是母线PA的中点,AB是底面圆的直径,底面半径OC与母线PB所成的角的大小等于θ.
(1)当θ=60°时,求异面直线MC与PO所成的角;
(2)当三棱锥M-ACO的体积最大时,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4
3
,半径小于5.
(1)求直线PQ与圆C的方程;
(2)若直线l∥PQ,直线l与PQ交于点A、B,且以AB为直径的圆经过坐标原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知甲、乙两地相距为s千米,汽车从甲地匀速行驶到乙地,速度每小时不得超过70千米.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:固定部分为a元,可变部分与速度v(单位km╱h)的平方成正比,且比例系数为m.
(1)求汽车全程的运输成本y(以元为单位)关于速度v(单位km╱h)的函数解析式;
(2)为了全程的运输成本最小,汽车应该以多大的速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=-
1
2
,2an=an-1-n-1(n≥2,n∈N*),设bn=an+n.
(1)证明:数列{bn}是等比数列;
(2)若cn=(
1
2
)
n
-an,Pn为数列{
1
cn2+cn
}的前n项和,若Pn≤λCn+1对一切n∈N*均成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆C:
x=1+
2
cosθ
y=1+
2
sinθ
(θ为参数)的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线
x=-t
y=
3
t
(t为参数)与曲线C1:ρ=4sinθ异于点O的交点为A,与曲线C2:ρ=2sinθ异于点O的交点为B,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B分别是直线y=
3
3
x和y=-
3
3
x上的两个动点,线段AB长为2
3
,P是AB的中点,则动点P的轨迹C的方程为
 

查看答案和解析>>

同步练习册答案