精英家教网 > 高中数学 > 题目详情
18.计算${∫}_{1}^{5}$(|2-x|+|sinx|)dx+${∫}_{1}^{3}$$\sqrt{3+2x-{x}^{2}}$dx.

分析 先计算${∫}_{1}^{5}$(|2-x|+|sinx|)dx=${∫}_{2}^{5}$(x-2)dx+${∫}_{1}^{2}$(2-x)dx+${∫}_{1}^{π}$sinxdx-${∫}_{π}^{5}$sinxdx的积分,再根据定积分的几何意义,${∫}_{1}^{3}$$\sqrt{3+2x-{x}^{2}}$dx=${∫}_{1}^{3}$$\sqrt{4-(x-1)^{2}}$dx,表示以(1,0)为圆心,以2为半径的圆的面积的四分之一,问题得以解决.

解答 解:${∫}_{1}^{5}$(|2-x|+|sinx|)dx=${∫}_{2}^{5}$(x-2)dx+${∫}_{1}^{2}$(2-x)dx+${∫}_{1}^{π}$sinxdx-${∫}_{π}^{5}$sinxdx=($\frac{1}{2}$x2-2x)|${\;}_{2}^{5}$+(2x-$\frac{1}{2}$x2)|${\;}_{1}^{2}$-cosx|${\;}_{1}^{π}$+cosx${|}_{π}^{5}$=5+2+cos1+cos5=7+cos1+cos5
∵${∫}_{1}^{3}$$\sqrt{3+2x-{x}^{2}}$dx=${∫}_{1}^{3}$$\sqrt{4-(x-1)^{2}}$dx,表示以(1,0)为圆心,以2为半径的圆的面积的四分之一,
∴${∫}_{1}^{3}$$\sqrt{3+2x-{x}^{2}}$dx=$\frac{1}{4}$×π×22=π,
∴${∫}_{1}^{5}$(|2-x|+|sinx|)dx+${∫}_{1}^{3}$$\sqrt{3+2x-{x}^{2}}$dx=7+cos1+cos5+π

点评 本题考查了定积分的计算和定积分的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2+|x+1-a|,其中a为实常数
(Ⅰ)判断f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]上的单调性
(Ⅱ)若存在x∈R,使不等式f(x)≤2|x-a|成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示的程序框图运行的结果是(  )
A.$\frac{2011}{2012}$B.$\frac{1}{2012}$C.$\frac{2012}{2013}$D.$\frac{1}{2013}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知α,β是两个不同的平面,m,n是两条不同的直线,则下列命题不正确的是(  )
A.若m∥α,α∩β=n,则m∥nB.若m⊥α,m?β,则α⊥β
C.若m∥n,m⊥α,则n⊥αD.若m⊥β,m⊥α,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(a)=$\frac{sin(a-\frac{π}{2})cos(\frac{3π}{2}-a)tan(7π-a)}{tan(-a-5π)sin(a-3π)}$.若tan(a-$\frac{3π}{2}$)=-2,求f(a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.cos$\frac{2}{7}$π+cos$\frac{4}{7}$π+cos$\frac{6}{7}$π=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若f(x)=2sin2ωx+sin(2ωx-$\frac{π}{6}$)(ω>0)对任意实数x都有f(x+$\frac{π}{2}$)=f(x-$\frac{π}{2}$),则f($\frac{7π}{24}$)等于(  )
A.$\frac{\sqrt{3}-1}{2}$B.$\frac{1+\sqrt{3}}{2}$C.$\frac{2+\sqrt{6}}{2}$D.$\frac{\sqrt{6}-2}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}的通项公式an=2n+1,其前n项和为Sn,则数列{$\frac{{S}_{n}}{n}$}的前4项的和为(  )
A.20B.17C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知三棱锥P-ABC中,△ABC为等边三角形,且PA=8,PB=PC=$\sqrt{73}$,AB=3,则三棱锥P-ABC外接球的表面积为76π.

查看答案和解析>>

同步练习册答案