精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为.

(1)求该椭圆的方程;

(2)若过点的直线与椭圆相交于 两点,且点恰为弦的中点,求直线的方程.

【答案】(1);(2).

【解析】试题分析:(1由已知条件求出的值,得出椭圆的方程;(2点差法求出直线的斜率,由直线的点斜式求出直线方程。

试题解析(1)抛物线y2=4x的焦点为F(1,0),准线方程为x=﹣1,

∴a2﹣b2=1 ①,

又椭圆截抛物线的准线x=﹣1所得弦长为3,

∴可得上面的交点为(﹣1, ),∴

由①代入②得4b4﹣9b2﹣9=0,解得b2=3或b2= (舍去),

从而a2=b2+1=4,∴该椭圆的方程为

(2)设A(x1,y1),B(x2,y2),代入椭圆方程可得,

3x12+4y12=12,3x22+4y22=12,

相减可得3(x1﹣x2)(x1+x2)+4(y1﹣y2)(y1+y2)=0,

由x1+x2=2,y1+y2=1,可得直线AB的斜率为

即直线AB的方程为 ,即为3x+2y﹣4=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设实数x,y满足不等式组 ,(2,1)是目标函数z=﹣ax+y取最大值的唯一最优解,则实数a的取值范围是(
A.(0,1)
B.(0,1]
C.(﹣∞,﹣2)
D.(﹣∞,﹣2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=﹣1,|an﹣an1|=2n1(n∈N,n≥2),且{a2n1}是递减数列,{a2n}是递增数列,则a2016=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数为偶函数,求的值;

(2)若,求函数的单调递增区间;

(3)当时,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.

(1)证明:DB=DC;
(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 同时满足以下两个条件:
x∈R,f(x)<0或g(x)<0;
x∈(﹣1,1),f(x)g(x)<0.
则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由形状为长方形A1B1C1D1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10(如图所示)

(1)若设休闲区的长和宽的比x(x>1),求公园ABCD所占面积S关于x的函数S(x)的解析式;

(2)要使公园所占面积最小,则休闲区A1B1C1D1的长和宽该如何设计?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)判断函数的奇偶性;

(2)是否存在实数使得的定义域为,值域为?若存在,求出实数的取值范围;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校有120名教师,且年龄都在20岁到60岁之间,各年龄段人数按分组,其频率分布直方图如图所示,学校要求每名教师都要参加两项培训,培训结束后进行结业考试.已知各年龄段两项培训结业考试成绩优秀的人数如表示,假设两项培训是相互独立的,结业考试成绩也互不影响.

年龄分组

A项培训成绩优秀人数

B项培训成绩优秀人数

[20,30)

30

18

[30,40)

36

24

[40,50)

12

9

[50,60]

4

3


(1)若用分层抽样法从全校教师中抽取一个容量为40的样本,求从年龄段[20,30)抽取的人数;
(2)求全校教师的平均年龄;
(3)随机从年龄段[20,30)和[30,40)内各抽取1人,设这两人中两项培训结业考试成绩都优秀的人数为X,求X的概率分布和数学期望.

查看答案和解析>>

同步练习册答案