精英家教网 > 高中数学 > 题目详情
已知△ABC的三个内角分别为A,B,C,向量与向量夹角的余弦角为
(1)求角B的大小;
(2)求sinA+sinC的取值范围.
【答案】分析:本题考查的知识点是数量积表示两个向量的夹角,及三角函数的最值,
(1)由向量与向量夹角的余弦角为.我们可以构造一个关于角B的三角方程,解方程后,根据B为△ABC的内角,易得到角B的大小.
(2)根据(1)的结论,我们可以将sinA+sinC中C角消掉,得到一个关于A角的正弦型函数,再由结合正弦型函数的性质,易得sinA+sinC的取值范围.
解答:解:(Ⅰ)∵m=(sinB,1-cosB),n=(2,0),
(2分)
∴2cos2B-cosB-1=0.
解得(舍)∵0<B<π∴(6分)
(Ⅱ)由(Ⅰ)可知
(9分)
,∴
(13分)
点评:cosθ=这是由向量的数量积表示夹角一唯一公式,也是利用向量求角的唯一公式,希望大家牢固掌握,熟练应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个顶点的A、B、C及平面内一点P满足
PA
+
PB
+
PC
=
AB
,下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A、B、C及平面内一点P,若
PA
+
PB
+
PC
=
AB
,则点P与△ABC的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点ABC及平面内一点P满足:
PA
+
PB
+
PC
=
0
,若实数λ满足:
AB
+
AC
=λ
AP
,则λ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知△ABC的三个顶点坐标分别为A(1,3)、B(3,1)、C(-1,0),求BC边上的高所在的直线方程.
(2)过椭圆
x2
16
+
y2
4
=1
内一点M(2,1)引一条弦,使得弦被M点平分,求此弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A,B,C及平面内一点P满足:
PA
+
PB
+
PC
=
0
,若实数λ 满足:
AB
+
AC
AP
,则λ的值为(  )
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步练习册答案