精英家教网 > 高中数学 > 题目详情
已知函数F(x)=
3x-2
2x-1
(x≠
1
2
)

(1)求F(
1
2011
)+F(
2
2011
)+…+F(
2010
2011
)

(2)已知数列{an}满足a1=2,an+1=F(an),求数列{an}的通项公式;
(3) 求证:a1a2a3…an
2n+1
(1)因为F(x)+F(1-x)=
3x-2
2x-1
+
3(1-x)-2
2(1-x)-1
=3

所以由倒序相加可得:2[F(
1
2011
)+F(
2
2011
)+…+F(
2010
2011
)
]
=[F(
1
2011
)+F(
2010
2011
)]+…+[F(
2010
2011
)+F(
1
2011
)]
=3×2010=6030,
F(
1
2011
)+F(
2
2011
)+…+F(
2010
2011
)
=3015;
(2)由an+1=F(an),两边同时减去1,得an+1-1=
an-1
2an-1

所以
1
an+1-1
=
2an-1
an-1
=2+
1
an-1

{
1
an-1
}
是以2为公差、1为首项得等差数列.
所以
1
an-1
=2n-1
,由此an=
2n
2n-1

(3)因为(2n)2>(2n)2-1=(2n+1)(2n-1),
所以
2n
2n-1
2n+1
2n
,于是
2
1
3
2
4
3
5
4
,…,
2n
2n-1
2n+1
2n

所以a1a2an=
(a1a2an)2
=
2
1
2
1
4
3
4
3
2n
2n-1
2n
2n-1

2
1
3
2
4
3
2n
2n-1
2n+1
2n
=
2n+1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案