精英家教网 > 高中数学 > 题目详情
15.已知抛物线y2=4x的准线是圆x2+y2-2Px-16+P2=0的一条切线,则圆的另一条垂直于x轴的切线方程是x=-9或x=7.

分析 求得抛物线的准线方程,将(-1,0)代入圆的方程,求得P的值,即可求得圆的另一条垂直于x轴的切线方程.

解答 解:抛物线y2=4x的准线方程为x=-1,而圆方程为(x-P) 2+y2=16,又(-1,0)在圆上,∴(P+1)2=16,即P=-5或P=3,
∴另一条切线方程为x=-9或x=7,
故答案为:x=-9或x=7.

点评 本题考查抛物线的简单几何性质,直线与圆的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,1),则($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{b}$-2$\overrightarrow{a}$)=(  )
A.-2B.-1C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知E(1,0),K(-1,0),P是平面上一动点,且满足$|\overrightarrow{PE}|•|\overrightarrow{KE}|=\overrightarrow{PK}•\overrightarrow{EK}$.
(1)求点P的轨迹C对应的方程;
(2)过点K的直线l与C相交于A、B两点(A点在x轴上方),点A关于x轴的对称点为D,且$\overrightarrow{EA}•\overrightarrow{EB}=-8$,求△ABD的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.事件A,B是相互独立的,P(A)=0.4,P(B)=0.3,下列四个式子:①P(AB)=0.12;②P($\overline{A}$B)=0.18;③P(A$\overline{B}$)=0.28;④P($\overline{A}$$\overline{B}$)=0.42.其中正确的有(  )
A.4个B.2个C.3个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设α、β、γ是三个互不重合的平面,l是直线,给出下列命题
①若α⊥β,β⊥γ,则α∥γ;②若l上两点到α的距离相等,则l∥α;
③若l⊥α,l∥β,则α⊥β;④若α∥β,l∥α,l?β,则l∥β.
其中正确的命题是(  )
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知α是第四象限角,tanα=-$\frac{5}{12}$,则sinα=(  )
A.$\frac{1}{5}$B.$\frac{5}{13}$C.$-\frac{5}{13}$D.$-\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=cos2x+$\sqrt{3}$sinxcosx.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin(x-$\frac{π}{6}$)cosx+1.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[$\frac{π}{12}$,$\frac{π}{2}$]时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足asinA-csinC=(a-b)sinB.
(1)求角C的大小;
(2)若边长$c=\sqrt{3}$,求△ABC的周长最大值.

查看答案和解析>>

同步练习册答案