精英家教网 > 高中数学 > 题目详情
若点M在直线a上,a在平面α内,则M,a,α间的上述关系的集合表示可记作(  )
A、M∈a∈α
B、M∈a⊆α
C、M⊆a⊆α
D、M⊆a∈α
考点:空间中直线与平面之间的位置关系
专题:规律型,空间位置关系与距离
分析:点在直线上,称点属于直线,直线在平面内,称作直线真包含于平面,利用集合中元素与集合的关系符号、集合与集合的关系符号表达即得.
解答: 解:∵点M在直线a上,∴M∈a,
∵a在平面α内,∴a⊆α
∴M∈a⊆α,
故选:B.
点评:本题考查点与直线、直线与平面的位置关系的表示,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A,B是⊙0:x2+y2=4与x轴的两个交点,C是⊙O上异于点A,B的任意一点,过点B作直线l的垂线BP,且与AC的延长线交于点P,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={0,1,2,3},集合P={x|f(x)=
3-x
lgx
},则M∩∁RP=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,E、F分别是三棱锥P-ABC的棱AP、BC的中点,PC=10,AB=6,EF=7,则异面直线AB与PC所成的角为(  )
A、30°B、60°
C、0°D、120°

查看答案和解析>>

科目:高中数学 来源: 题型:

即将开工的上海与周边城市的城际列车路线将大大缓解交通的压力,加速城市之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果一列火车每次拖7节车厢,每天能来回10次.每天来回次数t是每次拖挂车厢个数n的一次函数.
(1)写出n与t的函数关系式;
(2)每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数y最多?并求出每天最多的营运人数(注:营运人数指火车运送的人数)

查看答案和解析>>

科目:高中数学 来源: 题型:

如果双曲线的a=2,一个焦点为(5,0),则其标准方程为(  )
A、
x2
4
-
y2
9
=1
B、
y2
4
-
x2
21
=1
C、
x2
4
-
y2
21
=1
D、
x2
4
-
y2
25
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

给定三角形数表如图所示,其中第一行各数依次是1,2,3,…,2009,2010,2011,从第二行起,每个数分别等于它上面一行左、右两数之和,设第i行第j个数为f(i,j)(i,j∈N*,i+j≤2012),则:f(8,1)=
 
,f(i,j)=
 
(用i和j表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年巴西世界杯足球赛比赛期间,某人为了了解我校学生“通过电视收看世界杯”是否与性别有关,从全校学生中随机抽取30名学生进行了问卷调查,得到了如下列联表:
男生女生合计
收看10
不收看8
合计30
P(k2>k00.1000.0500.010
k02.7063.8416.635
已知在这30名同学中随机抽取1人,抽到“通过电视收看世界杯”的学生的概率是
8
15

(参考公式:k2=
n(ad-bc)2
(a+b)(a+c)(c+d)(b+d)
,n=a+b+c+d)
(1)请将上面的列联表补充完整(不用写计算过程);
(2)并根据此资料分析:能否有90%的把握认为“通过电视收看世界杯”与性别是否有关.

查看答案和解析>>

科目:高中数学 来源: 题型:

设α,β,γ是三个互不重合的平面,m,n是两条不重合的直线,则下列命题中正确的是(  )
A、若m∥α,n∥β,α⊥β,则m⊥n
B、若α∥β,m?β,m∥α,则m∥β
C、若α⊥β,m⊥α,则m∥β
D、若α⊥β,β⊥γ,则α⊥γ

查看答案和解析>>

同步练习册答案