精英家教网 > 高中数学 > 题目详情
2014年巴西世界杯足球赛比赛期间,某人为了了解我校学生“通过电视收看世界杯”是否与性别有关,从全校学生中随机抽取30名学生进行了问卷调查,得到了如下列联表:
男生女生合计
收看10
不收看8
合计30
P(k2>k00.1000.0500.010
k02.7063.8416.635
已知在这30名同学中随机抽取1人,抽到“通过电视收看世界杯”的学生的概率是
8
15

(参考公式:k2=
n(ad-bc)2
(a+b)(a+c)(c+d)(b+d)
,n=a+b+c+d)
(1)请将上面的列联表补充完整(不用写计算过程);
(2)并根据此资料分析:能否有90%的把握认为“通过电视收看世界杯”与性别是否有关.
考点:独立性检验
专题:计算题,概率与统计
分析:(1)由已知数据可求得2×2列联表;
(2)计算观测值,把求得的观测值同临界值进行比较,得到没有充足的理由认为“通过电视收看世界杯”与性别有关
解答: 解:(1)
男生女生合计
收看10616
不收看6814
合计161430
(2)由已知数据得:K2=
30×(10×8-6×6)2
16×14×16×14
≈1.158<2.706,
所以,没有90%的把握认为“通过电视收看世界杯”与性别是否有关.
点评:本题考查独立性检验的应用,准确的数据运算是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=
log
2
0.3
x
-log0.3x的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点M在直线a上,a在平面α内,则M,a,α间的上述关系的集合表示可记作(  )
A、M∈a∈α
B、M∈a⊆α
C、M⊆a⊆α
D、M⊆a∈α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(asinx+bcosx)•ex在x=
π
3
处有极值,则
a
b
的值为(  )
A、2+
3
B、2-
3
C、
3
+1
D、
3
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆C1
x2
a2
+
y2
b2
=1(a>b>0),过点Q(1,
1
2
)作圆C2:x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线l与圆C2相切于点P,且交椭圆C1于点M,N,求证:∠MON是钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ex-
1
2
(x<0)与g(x)=x2+ln(x+a)的图象上存在关于y轴对称的点,则a的取值范围是(  )
A、(-∞,
e
)
B、(-∞,
1
e
)
C、(-
1
e
e
)
D、(-
e
1
e
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知箱子里装有4张大小、形状都相同的卡片,标号分别为1,2,3,4
(1)从箱子中任取两张卡片,求两张卡片的标号之和不小于4的概率;
(2)从箱子中任意取出一张卡片记下它的标号m,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的标号n,求使得幂函数f(x)=(m-n)x
m
n
的图象关于y轴对称的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

从4名女生和3名男生中选出3人参加三个不同的培训班,每个培训班一人.若这3人中至少有一名男生,则不同的选派方案共有
 
种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC的所有棱长都相等,现沿PA,PB,PC三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为2
6
,则三棱锥P-ABC的内切球的体积为
 

查看答案和解析>>

同步练习册答案