精英家教网 > 高中数学 > 题目详情

一边长为的正方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒。
(1)试把方盒的容积表示为的函数;(2)多大时,方盒的容积最大?

(1)(2)当时,无盖方盒的容积最大

解析试题分析:由于在边长为的正方形铁片的四角截去四个边长为的小正方形,做成一个无盖方盒,
所以无盖方盒的底面是正方形,且边长为,高为,        2分
(1)无盖方盒的容积          5分
(2)因为.
所以,令       9分
时,;当时,     11分
因此,是函数的极大值点,也是最大值点。      12分
所以,当时,无盖方盒的容积最大。  3分
答:当时,无盖方盒的容积最大。    14分
考点:本小题主要考查导数在实际问题中的应用.
点评:利用导数解决实际问题时,不要忘记函数本身的定义域,求最值时,要说清楚函数的单调性,步骤要完整.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

建造一个容积为50,高为2长方体的无盖铁盒,问这个铁盒底面的长和宽各为多少时材料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为奇函数,为常数,
(1)求的值;
(2)证明在区间上单调递增;
(3)若,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

解不等式:-3<4x-4x2≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)设函数,求函数的单调区间;
(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).

(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

海安县城有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
(1)设在甲家租一张球台开展活动小时的收费为,在乙家租一张球台开展活动小时的收费为.试求
(2)问:小张选择哪家比较合算?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一艘轮船在航行过程中的燃料费与它的速度的立方成正比例关系,其他与速度无关的费用每小时96元,已知在速度为每小时10公里时,每小时的燃料费是6元,要使行驶1公里所需的费用总和最小,这艘轮船的速度应确定为每小时多少公里?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

建造一间占 地面积为12m²的背面靠墙的猪圈,底面为长方形,猪圈正面的造价为每平方米12元,侧面的造价为每平方米80元,屋顶造价为1120元.如果墙高3m,且不计猪圈背面的费用,问:如何设计能使猪圈的总 造价最低?最低总造价是多少?

查看答案和解析>>

同步练习册答案