【题目】由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阀值与检验标准(GB/T19522-2010)》于2011年7月1日正式实施.车辆驾驶人员酒饮后或者醉酒后驾车血液中的酒精含量阀值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”见图,且图表示的函数模型
,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:
,
)
驾驶行为类型 | 阀值 |
饮酒后驾车 |
|
醉酒后驾车 |
|
车辆驾车人员血液酒精含量阀值
![]()
喝1瓶啤酒的情况
A.
B.
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的正六边形ABCDEF的中心为O,G、H、M、N、P、Q为圆O上的点,△GAB,△HBC,△MCD,△NDE,△PEF,△QAF分别是以AB,BC,CD,DE,EF,FA为底边的等腰三角形,沿虚线剪开后,分别以AB,BC,CD,DE,EF,FA为折痕折起△GAB,△HBC,△MCD,△NDE,△PEF,△QAF,使得G、H、M、N、P、Q重合,得到六棱锥.当正六边形ABCDEF的边长变化时,所得六棱锥体积(单位:cm3)的最大值为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阀值与检验标准(GB/T19522-2010)》于2011年7月1日正式实施.车辆驾驶人员酒饮后或者醉酒后驾车血液中的酒精含量阀值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”见图,且图表示的函数模型
,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:
,
)
驾驶行为类型 | 阀值 |
饮酒后驾车 |
|
醉酒后驾车 |
|
车辆驾车人员血液酒精含量阀值
![]()
喝1瓶啤酒的情况
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某钢铁加工厂新生产一批钢管,为了了解这批产品的质量状况,检验员随机抽取了
件钢管作为样本进行检测,将它们的内径尺寸作为质量指标值,由检测结果得如下频率分布表和频率分布直方图:
分组 | 频数 | 频率 |
|
|
|
| ||
|
| |
| ||
| ||
|
|
|
|
|
|
合计 |
|
|
![]()
(1)求
,
;
(2)根据质量标准规定:钢管内径尺寸大于等于
或小于
为不合格,钢管内径尺寸在
或
为合格,钢管内径尺寸在
为优等.钢管的检测费用为
元/根,把样本的频率分布作为这批钢管的概率分布.
(i)若从这批钢管中随机抽取
根,求内径尺寸为优等钢管根数
的分布列和数学期望;
(ii)已知这批钢管共有
根,若有两种销售方案:
第一种方案:不再对该批剩余钢管进行检测,扣除
根样品中的不合格钢管后,其余所有钢管均以
元/根售出;
第二种方案:对该批钢管进行一一检测,不合格钢管不销售,并且每根不合格钢管损失
元,合格等级的钢管
元/根,优等钢管
元/根.
请你为该企业选择最好的销售方案,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】疫情期间,有一批货物需要用汽车从城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:
所用时间 | 10 | 11 | 12 | 13 |
通过公路1的频数 | 20 | 40 | 20 | 20 |
通过公路2的频数 | 10 | 40 | 40 | 10 |
(1)为进行某项研究,从所用时间为12的60辆汽车中随机抽取6辆,若用分层随机抽样的方法抽取,求从通过公路1和公路2的汽车中各抽取几辆:
(2)若从(1)的条件下抽取的6辆汽车中,再任意抽取2辆汽车,求这2辆汽车至少有1辆通过公路1的概率;
(3)假设汽车A只能在约定时间的前11h出发,汽车B只能在约定时间的前12h出发.为了尽最大可能在各自允许的时间内将货物从城市甲运到城市乙,汽车A和汽车B应如何选择各自的道路?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
,求曲线
在点
处的切线方程;
(2)若函数
在其定义域内为增函数,求
的取值范围;
(3)在(2)的条件下,设函数
,若在
上至少存在一点
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
.
(1)若
在
处有极值,问是否存在实数m,使得不等式
对任意
及
恒成立?若存在,求出m的取值范围;若不存在,请说明理由.
;
(2)若
,设
.
①求证:当
时,
;
②设
,求证:![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com