精英家教网 > 高中数学 > 题目详情
21、已知数列{an}:a1=1,a2=2,a3=r,an+3=an+2(n是正整数),与数列{bn}:b1=1,b2=0,b3=-1,b4=0,bn+4=bn(n是正整数).
记Tn=b1a1+b2a2+b3a3+…+bnan
(1)若a1+a2+a3+…+a12=64,求r的值;
(2)求证:当n是正整数时,T12n=-4n;
分析:本题考查的知识点是数列求和及数学归纳法证明.(1)由已知中a1=1,a2=2,a3=r,an+3=an+2,我们易给出a1+a2+a3+…+a12的表达式(含参数r),构造方程后,解方程即可进行求解.(2)要证明当n是正整数时,T12n=-4n,我们可以利用数学归纳法,对其进行论证.
解答:解:(1)a1+a2+a3+…+a12
=1+2+r+3+4+(r+2)+5+6+(r+4)+7+8+(r+6)
=48+4r.
∵48+4r=64,
∴r=4.
证明:(2)用数学归纳法证明:
当n∈Z+时,T12n=-4n.
①当n=1时,T12=a1-a3+a5-a7+a9-a11=-4,
等式成立
②假设n=k时等式成立,即T12k=-4k,
那么当n=k+1时,
T12(k+1)=T12k+a12k+1-a12k+3+a12k+5-a12k+7+a12k+9-a12k+11
=-4k+(8k+1)-(8k+r)+(8k+4)-(8k+5)+(8k+r+4)-(8k+8)
=-4k-4=-4(k+1),
等式也成立.
根据①和②可以断定:当n∈Z+时,T12n=-4n.
点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足
a1-1
2
+
a2-1
22
+…+
an-1
2n
=n2+n(n∈N*)

(I)求数列{an}的通项公式;
(II)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a 1=
2
5
,且对任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(1)求证:数列{
1
an
}为等差数列,并求{an}的通项公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求证:Tn
4
15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a 1=
2
5
,且对任意n∈N+,都有
an
an+1
=
4an+2
an+1+2

(1)求{an}的通项公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求证:Tn
4
15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a n+an+1=
1
2
(n∈N+)
,a 1=-
1
2
,Sn是数列{an}的前n项和,则S2013=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}:,,,…,,…,其中a是大于零的常数,记{an}的前n项和为Sn,计算S1,S2,S3的值,由此推出计算Sn的公式,并用数学归纳法加以证明.

查看答案和解析>>

同步练习册答案