精英家教网 > 高中数学 > 题目详情

将圆心角为1200,面积为3的扇形,作为圆锥的侧面,求圆锥的表面积和体积.

=3,R=1;S=4;V=.

解析试题分析:设圆锥的母线为l,底面半径为r,
∵3π=πl2∴l=3,∴120°=×360°,∴r=1,∴圆锥的高是=2
∴圆锥的表面积是πr2+πrl=4π
=3,R=1;S=4;圆锥的体积是V=.
考点:圆锥的表面积
点评:解决的关键是理解圆锥 表面积是底面积加侧面积,然后准确的运算,一般不容易失分。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期;
(2)设的最小值是,最大值是,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,摩天轮的半径为50 m,点O距地面的高度为60 m,摩天轮做匀速转动,每3 min转一圈,摩天轮上点P的起始位置在最低点处.

(1)试确定在时刻t(min)时点P距离地面的高度;
(2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85 m?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在一个周期内的图象下图所示。

(1)求函数的解析式;
(2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知其中  ,若图象中相邻的两条对称轴间的距离不小于
(1)求的取值范围
(2)在中,a,b,c分别为角A,B,C的对边,。当取最大值时,f(A)=1,求bc的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的定义域及最小正周期;
(2)求的单调递增区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为偶函数,其图象上相邻两个最高点之间的距离为.
(1)求函数的解析式.
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数(其中)的最大值为2,最小正周
期为.
(1)求函数的解析式;
(2)若函数图象上的两点的横坐标依次为为坐标原点,求△ 的
面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数
(Ⅰ)求函数的最小正周期;
(Ⅱ)确定函数上的单调性并求在此区间上的最小值.

查看答案和解析>>

同步练习册答案