精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=sinωx-$\sqrt{3}$cosωx(ω>0),若方程f(x)=-1在(0,π)上有且只有四个实数根,则实数ω的取值范围为(  )
A.($\frac{13}{6}$,$\frac{7}{2}$]B.($\frac{7}{2}$,$\frac{25}{6}$]C.($\frac{25}{6}$,$\frac{11}{2}$]D.($\frac{11}{2}$,$\frac{37}{6}$]

分析 化简f(x)的解析式,作出f(x)的函数图象,利用三角函数的性质求出直线y=-1与y=f(x)在(0,+∞)上的交点坐标,则π介于第4和第5个交点横坐标之间.

解答 解:f(x)=2sin(ωx-$\frac{π}{3}$),
作出f(x)的函数图象如图所示:

令2sin(ωx-$\frac{π}{3}$)=-1得ωx-$\frac{π}{3}$=-$\frac{π}{6}$+2kπ,或ωx-$\frac{π}{3}$=$\frac{7π}{6}$+2kπ,
∴x=$\frac{π}{6ω}$+$\frac{2kπ}{ω}$,或x=$\frac{3π}{2ω}$+$\frac{2kπ}{ω}$,k∈Z,
设直线y=-1与y=f(x)在(0,+∞)上从左到右的第4个交点为A,第5个交点为B,
则xA=$\frac{3π}{2ω}+$$\frac{2π}{ω}$,xB=$\frac{π}{6ω}+\frac{4π}{ω}$,
∵方程f(x)=-1在(0,π)上有且只有四个实数根,
∴xA<π≤xB
即$\frac{3π}{2ω}+$$\frac{2π}{ω}$<π≤$\frac{π}{6ω}+\frac{4π}{ω}$,解得$\frac{7}{2}<ω≤\frac{25}{6}$.
故选B.

点评 本题考查了三角函数的恒等变换,三角函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.圆心在x轴上,半径为2,且过点(1,2)的圆的方程为(  )
A.(x-1)2+y2=4B.(x-2)2+y2=4C.x2+(y-1)2=4D.(x-1)2+(y-4)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数 y=2sin(2x+$\frac{π}{3}$)的图象,可由函数y=sinx 的图象怎样变换得到?并画出图形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{(4a-3)x+2a-4,x≤t}\\{2{x}^{3}-6x,x>t}\end{array}\right.$,无论t取何值,函数f(x)在区间(-∞,+∞)上总是不单调,则a的取值范围是(-∞,$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,矩形ABCD中,AB=2AD=2,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE,若M为线段A1C的中点,则在△ADE翻转过程中,对于下列说法:
①|CA|≥|CA1|.
②若点A1在平面ABCD的射影为O,则点O在∠BAD的平分线上.
③一定存在某个位置,使DE⊥AC1
④若$|{C{A_1}}|=\sqrt{3}$,则平面A1DE⊥平面ABCD
其中正确的说法是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx+$\frac{a}{x+1}$(a≥0).
(1)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)讨论函数f(x)的单调性;
(3)当函数f(x)有极值时,若对?x>0,f(x)≤(2016-a)x3+$\frac{{x}^{2}+a-1}{x+1}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的半焦距为c(c>0),左焦点为F,右顶点为A,抛物线${y^2}=\frac{15}{8}(a+c)x$与椭圆交于M,N两点,若四边形AMFN是菱形,则椭圆的离心率是(  )
A.$\frac{8}{15}$B.$\frac{4}{15}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=ax3+bx+1,若f(a)=8,则f(-a)=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,五面体PABCD中,CD⊥平面PAD,ABCD为直角梯形,∠BCD=$\frac{π}{2}$,PD=BC=CD=$\frac{1}{2}$AD,AP⊥PD.
(Ⅰ)若E为AP的中点,求证:BE∥平面PCD;
(Ⅱ)求二面角P-AB-C的余弦值;
(Ⅲ)若点Q在线段PA上,且BQ与平面ABCD所成角为$\frac{π}{6}$,求CQ的长.

查看答案和解析>>

同步练习册答案