精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}{(4a-3)x+2a-4,x≤t}\\{2{x}^{3}-6x,x>t}\end{array}\right.$,无论t取何值,函数f(x)在区间(-∞,+∞)上总是不单调,则a的取值范围是(-∞,$\frac{3}{4}$].

分析 由f'(x)=6x2-6,x>t,知x>t时,f(x)=2x3-6x一定存在单调递增区间,从而要使无论t取何值,函数f(x)在区间(-∞,+∞)总是不单调,必须有f(x)=(4a-3)x+2a-4不能为增函数,由此能求出a的取值范围.

解答 解:对于函数f(x)=2x3-6x,
f'(x)=6x2-6,x>t
当6x2-6>0时,即x>1或x<-1,
此时f(x)=2x3-6x,为增函数
当6x2-6<0时,-1<x<1,
∵x>t,∴f(x)=2x3-6x一定存在单调递增区间
要使无论t取何值,
函数f(x)在区间(-∞,+∞)总是不单调
∴f(x)=(4a-3)x+2a-4不能为增函数
∴4a-3≤0,∴a≤$\frac{3}{4}$.
故a的取值范围是(-∞,$\frac{3}{4}$].
故答案为:(-∞,$\frac{3}{4}$].

点评 本题考查实数的取值范围的求法,考查推理论证能力、运算求解能力、空间想象能力,考查等价转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{{sinx\sqrt{1-|x|}}}{{|{x+2}|-2}}$的奇偶性是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.关于x的不等式ax2+ax+a-1<0对一切实数恒成立,则实数a的取值范围是(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.小明同学在寒假社会实践活动中,对白天平均气温与某家奶茶店的A品牌饮料销量之间的关系进行了分析研究,他分别记录了1月11日至1月15日的白天气温x(°C)与该奶茶店的A品牌饮料销量y(杯),得到如下表数据:
日期1月11日1月12日1月13日1月14日1月15日
平均气温x(℃)91012118
销量y(杯)2325302621
(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组书记恰好是相邻2天数据的概率;
(Ⅱ)请根据所给五组书记,求出y关于x的线性回归方程式$\widehaty=\widehatbx+\widehata$.
(Ⅲ)根据(Ⅱ)所得的线性回归方程,若天气预报1月16号的白天平均气温为7(℃),请预测该奶茶店这种饮料的销量.
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知直三棱柱ABC-A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是AA1的中点.
(Ⅰ)求异面直线AB和C1D所成角的余弦值;
(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,若sinA:sinB:sinC=2:3:4,则最大角的余弦值为(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{1}{4}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=sinωx-$\sqrt{3}$cosωx(ω>0),若方程f(x)=-1在(0,π)上有且只有四个实数根,则实数ω的取值范围为(  )
A.($\frac{13}{6}$,$\frac{7}{2}$]B.($\frac{7}{2}$,$\frac{25}{6}$]C.($\frac{25}{6}$,$\frac{11}{2}$]D.($\frac{11}{2}$,$\frac{37}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统,鼓励市民租用公共自行车出行,公共自行车按每车每次的租用时间进行收费,具体收费标准如下:
①租用时间不超过1小时,免费;
②租用时间为1小时以上且不超过2小时,收费1元;
③租用时间为2小时以上且不超过3小时,收费2元;
④租用时间超过3小时,按每小时2元收费(不足一小时的部分按1小时计算)
甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.
(Ⅰ)求甲、乙两人所付租车费相同的概率;
(Ⅱ)设甲、乙两人所付租车费之和为随机变量ξ,求ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,三棱柱ABC-A1B1C1中,各棱长均相等,D,E,F分别为棱AB,BC,A1C1的中点.
(Ⅰ)证明EF∥平面A1CD;
(Ⅱ)若三棱柱ABC-A1B1C1为直棱柱,求直线BC与平面A1CD所成角的正弦值.

查看答案和解析>>

同步练习册答案