精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=ax3+bx+1,若f(a)=8,则f(-a)=-6.

分析 本题利用函数的奇偶性,得到函数解析式f(-x)与f(x)的关系,从面通过f(-a)的值求出f(a)的值,得到本题结论.

解答 解:∵函数f(x)=ax3+bx+1,
∴f(-x)=a(-x)3+b(-x)+1=-ax3-bx+1,
∴f(-x)+f(x)=2,
∴f(-a)+f(a)=2.
∵f(a)=8,
∴f(a)=-6.
故答案为-6.

点评 本题考查了函数的奇偶性,本题难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.关于x的不等式ax2+ax+a-1<0对一切实数恒成立,则实数a的取值范围是(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=sinωx-$\sqrt{3}$cosωx(ω>0),若方程f(x)=-1在(0,π)上有且只有四个实数根,则实数ω的取值范围为(  )
A.($\frac{13}{6}$,$\frac{7}{2}$]B.($\frac{7}{2}$,$\frac{25}{6}$]C.($\frac{25}{6}$,$\frac{11}{2}$]D.($\frac{11}{2}$,$\frac{37}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统,鼓励市民租用公共自行车出行,公共自行车按每车每次的租用时间进行收费,具体收费标准如下:
①租用时间不超过1小时,免费;
②租用时间为1小时以上且不超过2小时,收费1元;
③租用时间为2小时以上且不超过3小时,收费2元;
④租用时间超过3小时,按每小时2元收费(不足一小时的部分按1小时计算)
甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.
(Ⅰ)求甲、乙两人所付租车费相同的概率;
(Ⅱ)设甲、乙两人所付租车费之和为随机变量ξ,求ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\overrightarrow{a}$=(1,cosα),$\overrightarrow{b}$=(sinα,1),0<α<π,若$\vec a⊥\vec b$,则α=(  )
A.$\frac{2π}{3}$B.$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(x-2)ex+ax(a∈R)
(1)试确定函数f(x)的零点个数;
(2)设x1,x2是函数f(x)的两个零点,当x1+x2≤2时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U=R,A={x|x2-2x<0},B={x|2x≥2},则A∩(∁UB)=(  )
A.{x|0<x<2}B.{x|0<x<1}C.{x|0<x≤1}D.{x|0<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,三棱柱ABC-A1B1C1中,各棱长均相等,D,E,F分别为棱AB,BC,A1C1的中点.
(Ⅰ)证明EF∥平面A1CD;
(Ⅱ)若三棱柱ABC-A1B1C1为直棱柱,求直线BC与平面A1CD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为9元,被随机分配为1.49元,1.31元,2.19元,3.40元,0.61元,共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是(  )
A.$\frac{2}{5}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{5}{6}$

查看答案和解析>>

同步练习册答案