精英家教网 > 高中数学 > 题目详情
16.已知全集U=R,A={x|x2-2x<0},B={x|2x≥2},则A∩(∁UB)=(  )
A.{x|0<x<2}B.{x|0<x<1}C.{x|0<x≤1}D.{x|0<x≤2}

分析 先分别求出集合A,B,从而得到CUB,由此能求出A∩(∁UB).

解答 解:∵全集U=R,A={x|x2-2x<0}={x|0<x<2},
B={x|2x≥2}={x|x≥1},
∴CUB={x|x<1}
A∩(∁UB)={x|0<x<1}.
故选:B.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意补集、交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.函数 y=2sin(2x+$\frac{π}{3}$)的图象,可由函数y=sinx 的图象怎样变换得到?并画出图形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的半焦距为c(c>0),左焦点为F,右顶点为A,抛物线${y^2}=\frac{15}{8}(a+c)x$与椭圆交于M,N两点,若四边形AMFN是菱形,则椭圆的离心率是(  )
A.$\frac{8}{15}$B.$\frac{4}{15}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=ax3+bx+1,若f(a)=8,则f(-a)=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=sinx+$\sqrt{3}$cosx+2,x∈[0,2π],且关于x的方程f(x)=m有两个不等实数根α,β,则sin(α+β)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某几何体三视图如图所示,则该几何体的体积为$\frac{8}{3}$,表面积为$8+4\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°.F为PA中点,PD=$\sqrt{2}$,AB=AD=$\frac{1}{2}$CD=1. 四边形PDCE为矩形,线段PC交DE于点N.
(Ⅰ)求证:AC∥平面DEF;
(Ⅱ)求二面角A-BC-P的大小;
(Ⅲ)在线段EF上是否存在一点Q,使得BQ与平面BCP所成角的大小为$\frac{π}{6}$?若存在,求出Q点所在的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,五面体PABCD中,CD⊥平面PAD,ABCD为直角梯形,∠BCD=$\frac{π}{2}$,PD=BC=CD=$\frac{1}{2}$AD,AP⊥PD.
(Ⅰ)若E为AP的中点,求证:BE∥平面PCD;
(Ⅱ)求二面角P-AB-C的余弦值;
(Ⅲ)若点Q在线段PA上,且BQ与平面ABCD所成角为$\frac{π}{6}$,求CQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义[x]表示不超过的最大整数,如[2]=2,[2,2]=2,执行如图所示的程序框图,则输出S=(  )
A.1991B.2000C.2007D.2008

查看答案和解析>>

同步练习册答案