精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆 =1(a>b>0),F1、F2分别为椭 圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B、

(1)若∠F1AB=90°,求椭圆的离心率;
(2)若 =2 = ,求椭圆的方程.

【答案】
(1)解:若∠F1AB=90°,则△AOF2为等腰直角三角形,所以有OA=OF2,即b=C、

所以a= c,e= =


(2)解:由题知A(0,b),F1(﹣c,0),F2(c,0),

其中,c= ,设B(x,y).

=2 (c,﹣b)=2(x﹣c,y),解得x=

y=﹣ ,即B( ,﹣ ).

将B点坐标代入 =1,得 + =1,

+ =1,

解得a2=3c2.①

又由 =(﹣c,﹣b)( ,﹣ )=

b2﹣c2=1,

即有a2﹣2c2=1.②

由①,②解得c2=1,a2=3,从而有b2=2.

所以椭圆方程为 + =1.


【解析】(1)根据∠F1AB=90°推断出△AOF2为等腰直角三角形,进而可知OA=OF2,求得b和c的关系,进而可求得a和c的关系,即椭圆的离心率.(2)根据题意可推断出A,和两个焦点的坐标,设出B的坐标,利用已知条件中向量的关系,求得x和y关于c的表达式,代入椭圆方程求得a和c的关系,利用 = 求得a和c的关系,最后联立求得a和b,则椭圆方程可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥 中,底面 是边长为1的正方形,侧棱 底面 ,且 是侧棱 上的动点.

(1)求四棱锥 的表面积;
(2)是否在棱 上存在一点 ,使得 平面 ;若存在,指出点 的位置,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合.曲线 (t为参数),曲线C2的极坐标方程为ρ=ρcos2θ+8cosθ. (Ⅰ)将曲线C1 , C2分别化为普通方程、直角坐标方程,并说明表示什么曲线;
(Ⅱ)设F(1,0),曲线C1与曲线C2相交于不同的两点A,B,求|AF|+|BF|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣k( +lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为(
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的三个顶点分别为A(0,4)、B(-2,6)、C(-8,0).

(1)分别求边ACAB所在直线的方程;

(2)求AC边上的中线BD所在直线的方程;

(3)求AC边的中垂线所在直线的方程;

(4)求AC边上的高所在直线的方程;

(5)求经过两边ABAC的中点的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l1的参数方程为 ,(t为参数),直线l2的参数方程为 ,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣ =0,M为l3与C的交点,求M的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的参数方程为 (θ为参数),若P是圆C与x轴的交点,以原点O为极点,x轴的正半轴为极轴建立极坐标系,设过点P的圆C的切线为l (Ⅰ)求直线l的极坐标方程
(Ⅱ)求圆C上到直线ρ(cosθ+ sinθ)+6=0的距离最大的点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,OACBD的交点,EAD的中点,A1E⊥平面ABCD.

(1)证明:A1O∥平面B1CD1

(2)设MOD的中点,证明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,PA⊥底面ABCDADBCABADAC=3,PABC=4,M为线段AD上一点,AM=2MDNPC的中点.

(1)证明MN∥平面PAB

(2)求四面体NBCM的体积.

查看答案和解析>>

同步练习册答案