【题目】如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明MN∥平面PAB;
(2)求四面体N-BCM的体积.
【答案】(1)见解析;(2)
【解析】试题分析:(1)取的中点,连接,证得,得出,
即,再用线面平行的判定定理,即可作出证明;
(2)根据题意,得出到的距离为,得出,再利用三棱锥的体积公式,即可求得三棱锥的体积.
试题解析:
(1)证明:由已知得AM=AD=2,如图,取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.又AD∥BC,故,所以四边形AMNT为平行四边形,
于是MN∥AT.因为AT平面PAB,MN平面PAB,所以MN∥平面PAB.
(2)因为PA⊥平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA.
如图,取BC的中点E,连接AE,由AB=AC=3得AE⊥BC,AE==.
由AM∥BC得M到BC的距离为,故S△BCM=×4×=2,
所以四面体N-BCM的体积VN-BCM==.
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆 =1(a>b>0),F1、F2分别为椭 圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B、
(1)若∠F1AB=90°,求椭圆的离心率;
(2)若 =2 , = ,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县相邻两镇在一平面直角坐标系下的坐标为A(1,2)、B(4,0),一条河所在直线方程为l:x+2y-10=0,若在河边l上建一座供水站P使之到A、B两镇的管道最省,问供水站P应建在什么地方?此时|PA|+|PB|为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品的保鲜时间t(单位:小时)与储藏温度x(单位:℃)满足函数关系t=且该食品在4℃的保鲜时间是16小时。已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示。给出以下四个结论:
①该食品在6℃的保鲜时间是8小时;
②当x∈[-6,6]时,该食品的保鲜时间t随着x增大而逐渐减少;
③到了此日13时,甲所购买的食品还在保鲜时间内;
④到了此日14时,甲所购买的食品已然过了保鲜时间。
其中,所有正确结论的序号是__________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的图象经过点,且函数= 是偶函数
(1)求的解析式;
(2)已知,求函数在的最大值和最小值
(3)函数的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com