精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x+3
3x
,数列{an}满足a1=1,an+1=f(
1
an
)(n∈N*)

(1)求数列{an}的通项公式;
(2)令bn=
1
anan+1
Sn=b1+b2+…+bn
,若Sn
m-2013
2
对一切n∈N*成立,求最小正整数m.
分析:(1)由函数f(x)=
2x+3
3x
,数列{an}满足a1=1,an+1=f(
1
an
)(n∈N*)
.可得an+1=
2•
1
an
+3
3•
1
an
=an+
2
3
,再利用等差数列的通项公式即可得出;
(2)利用(1)可得bn=
1
anan+1
=
1
(
2
3
n+
1
3
)(
2
3
n+1)
=
9
2
(
1
2n+1
-
1
2n+3
)
,利用“裂项求和”即可得到Sn,利用单调性即可得出.
解答:解:(1)由函数f(x)=
2x+3
3x
,数列{an}满足a1=1,an+1=f(
1
an
)(n∈N*)
可得:an+1=
2•
1
an
+3
3•
1
an
=an+
2
3

∴数列{an}是以1为首项,
2
3
为公差的等差数列,
an=1+
2
3
(n-1)=
2
3
n+
1
3

(2)∵bn=
1
anan+1
=
1
(
2
3
n+
1
3
)(
2
3
n+1)
=
9
2
(
1
2n+1
-
1
2n+3
)

Sn=
9
2
(
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2n+1
-
1
2n+3
)=
9
2
(
1
3
-
1
2n+3
)

Sn
m-2013
2
,即
9
2
(
1
3
-
1
2n+3
)<
m-2013
2
对一切n∈N*成立,
9
2
(
1
3
-
1
2n+3
)
随着n单调递增,且
9
2
(
1
3
-
1
2n+3
)<
3
2

3
2
m-2013
2
,故m≥2016.
∴m的最小值为2016.
点评:本题综合考查了等差数列的通项公式、“裂项求和”、数列的单调性等基础知识与基本技能,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案