精英家教网 > 高中数学 > 题目详情
已知tan(θ+
π
4
)=
1
2
,则sinθcosθ=
 
考点:两角和与差的正切函数,同角三角函数基本关系的运用
专题:三角函数的求值
分析:已知等式左边利用两角和与差的正切函数公式化简,求出tanθ的值,原式分母看做“1”,分子分母除以cosθ变形后,将tanθ的值代入计算即可求出值.
解答: 解:∵tan(θ+
π
4
)=
tanθ+1
1-tanθtan
π
4
=
1
2
,∴tanθ=-
1
3
=
sinθ
cosθ

∴sinθcosθ=
sinθcosθ
sin2θ+cos2θ
=
tanθ
tan2θ+1
=
-
1
3
1
9
+1
=-
3
10

故答案为:-
3
10
点评:此题考查了两角和与差的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象过点(2,
2
),则f(x)=(  )
A、x
1
2
B、x
C、x2
D、x-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合M={x|x≥1},N={x|
3
x-2
≥1},则∁U(M∩N)=(  )
A、{x|x<2}
B、{x|x≤2}
C、{x|-1<x≤2}
D、{x|-1≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数m,n满足关于x的不等式|x2+mx+n|≤|3x2-6x-9|的解集为全体实数,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

cos(2α-β)=-
11
14
,sin(α-2β)=
4
3
7
,已知0<β<
π
4
<α<
π
2
,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,△ABC的面积为
3
3
2
且c=
7
,3cosC-2sin2C=0,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆O为等腰梯形ABCD的外接圆,且AB∥CD,过点C作圆的切线CE交AB的延长线于E,证明:
(1)∠E=∠CAD
(2)AC2=CD•AE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等比数列,若a2a3a4=64,
a6a8
=16,则(
1
4
-2×2-3-(a5 
1
3
=(  )
A、4
B、0
C、0或-4
D、-
255
128

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC内,a、b、c分别为角A、B、C所对的边,且满足sinA+sinB=2sinC,a=2b.
(1)求cosA的值;
(2)若S△ABC=
3
4
15
,求△ABC三边的长.

查看答案和解析>>

同步练习册答案