精英家教网 > 高中数学 > 题目详情
已知数列{an}前n项和Sn=2n,Tn{
1
an
}
的前n项和,则
lim
n→∞
Tn
=
 
考点:数列的求和
专题:等差数列与等比数列
分析:首先利用递推关系式求出数列的通项公式,进一步利用极限求值.
解答: 解:由Sn=2n
可知an=
2,n=1
2n-1,n≥2

所以
1
an
=
1
2
,n=1
2-n+1,n≥2

所以
lim
n→∞
Tn=
1
a1
+
a2
1-q
=
3
2

故答案为:
3
2
点评:本题考查的知识要点:数列通项的应用,极限问题的应用,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,把等腰直角三角形ABC沿斜边AB旋转至△ABD的位置,使CD=AC,求证:平面ABD⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
x-1
x+1
(a>0,a≠1).
(1)求函数f(x)的定义域;
(2)讨论f(x)在(1,+∞)上的单调性,并用定义证明;
(3)令g(x)=1+logax,当[m,n]?(1,+∞)(m<n)时,f(x)在[m,n]上的值域是[g(n),g(m)],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,
AB
=
a
AC
=
b
,当
a
b
满足下列条件式,能确定△ABC的形状吗?
(1)
a
b
<0;
(2)
a
b
=0;
(3)
a
b
>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的程序框图输出的结果b=(  )
A、7B、9C、11D、13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,-1),
b
=(-1,2),
p
=k
a
+
b
q
=
a
-k
b
,若
p
q
,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,(n+2)an+1-(n+1)an=0(n∈N*),求an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,-3),且
AB
=(3,7),则B点的坐标为(4,4).
 
(判断对错)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差为d的等差数列,{bn}是等比数列,函数f(x)=b1x2+b2x+b3的图象在y轴上的截距为-4,其最大值为a6-
7
2

(Ⅰ)求a6的值;
(Ⅱ)若d≠0且f(a2+a8)=f(a3+a11),求数列{bn}的通项公式bn
(Ⅲ)设Tn=
1
a6a7
+
1
a7a8
+…+
1
anan+1
(n≥6),若Tn的最小值为2,求d的值.

查看答案和解析>>

同步练习册答案