5£®¶¨Ò壺½«Ô²ÐIJ»Í¬µÄÁ½Ô²·½³ÌC1£º£¨x-a1£©2+£¨y-b1£©2=r12ÓëC2£º£¨x-a2£©2+£¨y-b2£©2=r22Á½±ß·Ö±ðÏà¼õËùµÃµÄÖ±Ïßm³ÆÎªÁ½Ô²µÄ¸ùÖᣮ
£¨1£©ÇóÖ¤£º¡°¸ùÖᡱËùÔÚÖ±ÏßmÓëÁ½Ô²Ô²ÐĵÄÁ¬Ïß´¹Ö±£»
£¨2£©ÇóÖ¤£º¡°¸ùÖᡱËùÔÚÖ±ÏßmÉÏÔÚÔ²Íⲿ·ÖµÄµãµ½Á½Ô²µÄÇÐÏß³¤ÏàµÈ£»
£¨3£©ÀûÓÃÉÏÊö·½·¨Åжϣ¬¶ÔÓÚÔ²C£ºx2+y2-2x+4y-4=0À´Ëµ£¬ÊÇ·ñ´æÔÚбÂÊΪ1µÄÖ±Ïßl£¬Ê¹ÒÔl±»Ô²C½ØµÃµÄÏÒABΪֱ¾¶µÄÔ²£¬¾­¹ýÔ­µã£¿Èô´æÔÚ£¬Ð´³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌõ¼þÀûÓá°¸ùÖᡱµÄ¶¨Ò壬¸ù¾ÝÔ²Ðĺ͹«¹²ÏÒµÄÖеãµÄÁ¬Ïß´¹Ö±ÇÒÆ½·ÖÏÒ£¬¿ÉµÃ¡°¸ùÖᡱËùÔÚÖ±ÏßmÓëÁ½Ô²Ô²ÐĵÄÁ¬Ïß´¹Ö±£®
£¨2£©Ö¤Ã÷£ºÉèµãMÊÇ£º¡°¸ùÖᡱËùÔÚÖ±ÏßmÉÏÔÚÔ²Íⲿ·ÖµÄµã£¬ÈçͼËùʾ£ºMP¡¢MQ·Ö±ðΪÁ½Ô²µÄÇÐÏß³¤£¬ÔòÓÉÇиîÏß¶¨Àí¿ÉµÃMP=MQ£®
£¨3£©¼ÙÉè´æÔÚÖ±Ïßl£ºy=x+b£¬°ÑËü´úÈëÔ²µÄ·½³Ì¿ÉµÃ2x2+£¨2b+2£©b2+4b-4=0 ¢Ù£¬ÉèA£¨x1£¬y1£©¡¢B£¨ x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨Àí¡¢ÒÔ¼°OA¡ÍOB£¬¿ÉµÃ x1•x2+y1•y2=0£¬ÇóµÃb=1£¬»òb=-4£®ÔÙ°Ñb=1£¬»òb=-4´úÈë¢Ù¼ìÑ飬Åбðʽ¾ù´óÓÚÁ㣬¿ÉµÃÂú×ãÌõ¼þµÄÖ±ÏßÓÐÁ½Ìõ£®

½â´ð ½â£º£¨1£©Ö¤Ã÷£ºÓÉÌâÒâ¿ÉµÃ¡°¸ùÖᡱ¼´Á½Ô²µÄ¹«¹²ÏÒËùÔÚµÄÖ±Ïߣ¬ÔÙ¸ù¾ÝÁ½Ô²ÏཻµÄÐÔÖʿɵã¬
Ô²Ðĺ͹«¹²ÏÒµÄÖеãµÄÁ¬Ïß´¹Ö±ÇÒÆ½·ÖÏÒ£¬
¹Ê¡°¸ùÖᡱËùÔÚÖ±ÏßmÓëÁ½Ô²Ô²ÐĵÄÁ¬Ïß´¹Ö±£®
£¨2£©Ö¤Ã÷£ºÉèµãMÊÇ£º¡°¸ùÖᡱËùÔÚÖ±ÏßmÉÏÔÚÔ²Íⲿ·ÖµÄµã£¬ÈçͼËùʾ£ºMP¡¢MQ·Ö±ðΪÁ½Ô²µÄÇÐÏß³¤£¬
ÔòÓÉÇиîÏß¶¨Àí¿ÉµÃMA•MB=MP2£¬MA•MB=MQ2£¬¡àMP=MQ£¬
¼´¡°¸ùÖᡱËùÔÚÖ±ÏßmÉÏÔÚÔ²Íⲿ·ÖµÄµãµ½Á½Ô²µÄÇÐÏß³¤ÏàµÈ£®
£¨3£©¼ÙÉè´æÔÚÖ±Ïßl£ºy=x+b£¬ÔòÓÉ$\left\{\begin{array}{l}{{x}^{2}{+y}^{2}-2x+4y-4=0}\\{y=x+b}\end{array}\right.$£¬¿ÉµÃ2x2+£¨2b+2£©b2+4b-4=0 ¢Ù£¬
ÉèA£¨x1£¬y1£©¡¢B£¨ x2£¬y2£©£¬Ôòx1+x2=-b-1£¬x1•x2=$\frac{{b}^{2}+2b-4}{2}$£¬
¡ày1•y2=£¨x1+b£©£¨x2+b£©=x1•x2+b£¨x1+x2£©+b2=$\frac{{b}^{2}+4b-4}{2}$+b£¨-b-1£©+b2=$\frac{{b}^{2}+2b-4}{2}$£®
ÓÖOA¡ÍOB£¬¡àx1•x2+y1•y2=0£¬¼´ $\frac{{b}^{2}+4b-4}{2}$+$\frac{{b}^{2}+2b-4}{2}$=0£¬ÇóµÃb=1£¬»òb=-4£®
ÔÙ°Ñb=1£¬»òb=-4´úÈë¢Ù¼ìÑ飬Åбðʽ¾ù´óÓÚÁ㣬¹ÊÂú×ãÌõ¼þµÄÖ±ÏßÓÐÁ½Ìõ£¬¼´ x-y+1=0 x-y-4=0£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éж¨Ò壬ԲµÄÇиîÏß¶¨Àí£¬Ö±ÏߺÍÔ²ÏཻµÄÐÔÖÊ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¼ÆË㣺
£¨1£©£¨2$\frac{1}{4}$£©${\;}^{\frac{1}{2}}$-£¨-7.8£©0-£¨3$\frac{3}{8}$£©${\;}^{\frac{2}{3}}$+£¨$\frac{2}{3}$£©-2  
£¨2£©£¨$\frac{1}{4}$£©${\;}^{-\frac{1}{2}}$•$\frac{£¨\sqrt{4a{b}^{-1}}£©^{3}}{0£®{1}^{-2}£¨{a}^{3}{b}^{-3}£©^{\frac{1}{2}}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©=x2+bx+c£¨b£¬c¡ÊR£©£®
£¨I£©Èôf£¨-1£©=f£¨2£©£¬ÇÒº¯Êýy=f£¨x£©-xµÄÖµÓòΪ[0£¬+¡Þ£©£¬Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©Èôc£¼0£¬ÇÒº¯Êýf£¨x£©ÔÚ[-1£¬1]ÉÏÓÐÁ½¸öÁãµã£¬Çó2b+cµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªA={x|-3¡Üx¡Ü4}£¬B={m-1¡Üx¡Üm+1}£¬B⊆A£¬Ôòm¡Ê[-2£¬3]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Çãб½ÇΪ45¡ãµÄÖ±Ïß½»Ë«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©ÓÚP¡¢Q£¬ÇÒPQÖеãΪM£¨1£¬3£©£¬A¡¢F·Ö±ðΪÓÒ¶¥µã¡¢ÓÒ½¹µã£¬Èô|$\overrightarrow{FP}$|•|$\overrightarrow{FQ}$|=17£®
£¨1£©ÇóË«ÇúÏßµÄÀëÐÄÂÊ£»
£¨2£©ÊÔÖ¤£º¹ýA¡¢P¡¢QÈýµãµÄÔ²ÓëxÖáÏàÇУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ºÚ°×Á½ÖÖÑÕÉ«µÄÕýÁù±ßÐεØÃæ×©°´ÈçͼµÄ¹æÂÉÆ´³ÉÈô¸É¸öͼ°¸£º

ÔòµÚ7¸öͼ°¸ÖÐÓа×É«µØÃæ×©30¿é£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{{3}^{x}-1}$+m£®
£¨1£©ÇóʵÊýmµÄÖµ£¬Ê¹f£¨x£©ÎªÆæº¯Êý£»
£¨2£©¶Ô£¨1£©ÖеÄf£¨x£©£¬Èôf-1£¨x£©ÊÇËüµÄ·´º¯Êý£¬ÇÒ·½³Ìf-1£¨x£©+$\frac{1}{x}$=c2+2ÔÚ[$\frac{5}{8}$£¬3]ÉÏÓн⣮ÇóʵÊýcµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÉèP£¨A£©=0.8£¬P£¨B£©=0.7£¬P£¨A|B£©=0.8£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®A£¬BÏ໥¶ÀÁ¢B£®A£¬B»¥²»ÏàÈÝC£®P£¨A+B£©=P£¨A£©+P£¨B£©D£®B?A

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Ä³ÁÖ³¡ÎªÁËÄܼ°Ê±·¢ÏÖ»ðÇ飬ÔÚÁÖ³¡ÖÐÉèÁ¢ÁËÁ½¸ö¹Û²âµãAºÍB£¬Ä³ÈÕÁ½¸ö¹Û²àµã·Ö±ð¹Û²âµ½C´¦³öÏÖ»ðÇ飬ÔÚA´¦¹Û²âµ½»ðÇé·¢ÉúÔÚ±±Æ«Î÷40¡ã·½Ïò£¬ÔÚB´¦¹Û²âµ½»ðÇéÔÚ±±Æ«Î÷60¡ã·½Ïò£¬ÈôBÔÚAµÄÕý¶«·½Ïò10ǧÃ×´¦£¬Ôò»ð³¡C¾àÀë¹Û²âµãA´¦29ǧÃ×£®£¨½á¹ûËÄÉáÎåÈëÈ¡Õû£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸