精英家教网 > 高中数学 > 题目详情
15.某林场为了能及时发现火情,在林场中设立了两个观测点A和B,某日两个观侧点分别观测到C处出现火情,在A处观测到火情发生在北偏西40°方向,在B处观测到火情在北偏西60°方向,若B在A的正东方向10千米处,则火场C距离观测点A处29千米.(结果四舍五入取整)

分析 根据题意求出∠ABC的度数,在三角形ABC中,利用正弦定理即可求出AC的长.

解答 解:如图所示,∠ABC=30°,∠C=10°,
在△ABC中,AB=10km,sin10°=0.1736,
由正弦定理得:$\frac{AC}{sin∠ABC}=\frac{AB}{sinC}$,
∴AC=$\frac{ABsin∠ABC}{sinC}$=$\frac{10×\frac{1}{2}}{0.1736}$≈29km,
则火场C到观测点A的距离为29km.
故答案为:29

点评 此题考查了正弦定理,以及非特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.定义:将圆心不同的两圆方程C1:(x-a12+(y-b12=r12与C2:(x-a22+(y-b22=r22两边分别相减所得的直线m称为两圆的根轴.
(1)求证:“根轴”所在直线m与两圆圆心的连线垂直;
(2)求证:“根轴”所在直线m上在圆外部分的点到两圆的切线长相等;
(3)利用上述方法判断,对于圆C:x2+y2-2x+4y-4=0来说,是否存在斜率为1的直线l,使以l被圆C截得的弦AB为直径的圆,经过原点?若存在,写出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a,b,c都是正数,证明不等式$\frac{{a}^{2}}{b+c}$+$\frac{{b}^{2}}{c+a}$+$\frac{{c}^{2}}{a+b}$$≥\frac{1}{2}$(a+b+c)当且仅当a=b=c时取等号.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1上任意一点M作它的一条渐近线的垂线,垂足为N,O为原点,则△MON的面积是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在公比为$\sqrt{2}$的等比数列{an}中,若sin(a2a3)=$\frac{3}{5}$,则cos(a1a6)的值是(  )
A.-$\frac{4}{5}$B.-$\frac{7}{25}$C.$\frac{4}{5}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R),则“$φ=\frac{π}{2}$”是“f(x)是偶函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(sinα,cosα-2sinα),$\overrightarrow{b}$=(1,2),$\overrightarrow{a}$与$\overrightarrow{b}$共线;
(1)求tanα的值;
(2)求$\frac{1+2sinαcosα}{sin^2α-cos^2α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一个圆锥母线长为2,母线与轴的夹角为30°,则该圆锥轴截面面积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为sn,且满足a1=1,an+1=3Sn
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:bn=log4an,求数列{bn}的前n项的和Tn

查看答案和解析>>

同步练习册答案