精英家教网 > 高中数学 > 题目详情
.(本小题满分12分)
有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用表示更换费用。
(1)求①号面需要更换的概率;
(2)求6个面中恰好有2个面需要更换的概率;
(3)写出的分布列,求的数学期望。
(1)因为①号面不需要更换的概率为:
所以①号面需要更换的概率为:P=1-=
(2)根据独立重复试验,6个面中恰好有2个面需要更换的概率为:
P6(2)=
(3)因为,又P6(0)=,P6(1)= ,P6(2)= ,P6(3)= ,P6(4)= ,P6(5)= ,P6(6)=   
的分布列为:

0
1
2
3
4
5
6
P(







=100,E=100E=300
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

某人有九把钥匙,其中只有一把是开办公室门的,现随机抽取一把,取后不放回,则恰在第5次打开此门的概率为    ▲   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知某种产品共有6个,其中有2个不合格产品,质检人员从中随机抽出2个,
(1) 抽取产品中只有一个合格产品的概率是多少?
(2) 检测出不合格产品的概率是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某电视台拟举行“团队共享”冲关比赛,其规则如下:比赛共设有“常识关”和“创新关”两关,每个团队共两人,每人各冲一关,“常识关”中有2道不同必答题,“创新关”中有3道不同必答题;如果“常识关”中的2道题都答对,则冲“常识关”成功且该团队获得单项奖励900元,否则无奖励;如果“创新关”中的3道题至少有2道题答对,则冲“创新关”成功且该团队获得单项奖励1800元,否则无奖励.现某团队中甲冲击“常识关”,乙冲击“创新关”,已知甲回答“常识关”中每道题正确的概率都为,乙回答“创新关”中每道题正确的概率都为,且两关之间互不影响,每道题回答正确与否相互独立.
(I)求此冲关团队在这5道必答题中只有2道回答正确且没有获得任何奖励的概率;
(Ⅱ)记此冲关团队获得的奖励总金额为随机变量,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,用1,2,3,4表示命中,用5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。经随机模拟产生了20组随机数:
907    966    191     925     271    932    812    458     569   683
431    257    393     027     556    488    730    113     537   989
据此估计,该运动员三次投篮恰有两次命中的概率为                      (    )
A.0.35B.0.30C.0.25D.0.20

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
甲、乙两个奥运会举办城市之间有7条网线并联,这7条网线能通过的信息量分别为1,1,2,2,2,3,3(信息流量单位),现从中任选三条网线,设可通过的信息量为. 若可通过的信息量≥6,则可保证信息通畅.
(I)求线路信息通畅的概率;
(II)求线路可通过的信息量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
甲、乙两名射手各进行一次射击,射中环数的分布列分别为:

8
9
10
P
0.3
0.5
a

8
9
10
P
0.2
0.3
b
(I)确定a、b的值,并求两人各进行一次射击,都射中10环的概率;
(II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中10环,则射击结束,否则继续射击,但最多不超过4轮,求结束时射击轮次数的分布列及期望,并求结束时射击轮次超过2次的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个不透明的口袋中有若干个红球和黑球,从中摸出一个,每个球被摸出的可能
性是相同的.现从中摸出两个球,均是红球的概率为,已知袋中红球有3个,则袋中共有球的个数为   
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

查看答案和解析>>

同步练习册答案