| A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{1}{2}$ | D. | $\sqrt{3}$ |
分析 利用余弦定理得出4=b2+c2-$\frac{2}{3}$bc,再利用基本不等式求出bc≤3,根据△ABC的面积公式即可求出它的最大值.
解答 解:△ABC中,a=2,cosA=$\frac{1}{3}$,
由余弦定理得,a2=b2+c2-2bccosA,
即4=b2+c2-$\frac{2}{3}$bc;
又4=b2+c2-$\frac{2}{3}$bc≥2bc-$\frac{2}{3}$bc=$\frac{4}{3}$bc,
当且仅当b=c时取“=”;
∴bc≤3,
∴△ABC的面积为
S=$\frac{1}{2}$bcsinA≤$\frac{1}{2}$×3×$\sqrt{1{-(\frac{1}{3})}^{2}}$=$\sqrt{2}$,
即△ABC面积的最大值为$\sqrt{2}$.
故选:B.
点评 本题考查了余弦定理和△ABC面积公式的应用问题,也考查了基本不等式的应用问题,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,使得f(x0)=0 | |
| B. | 函数y=f(x)的图象一定是中心对称图形 | |
| C. | 若x0是函数f(x)的极值点,则f'(x0)=0 | |
| D. | 若x0是函数f(x)的极小值点,则函数f(x)在区间(-∞,x0)上单调递减 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | $\frac{3\sqrt{2}}{2}$ | C. | $\frac{\sqrt{34}}{2}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com