(本小题满分12分) 已知圆
,点
,直线
.
(1) 求与圆
相切,且与直线
垂直的直线方程;
(2) 在直线
上(
为坐标原点),存在定点
(不同于点
),满足:对于圆
上任一点
,都有
为一常数,试求所有满足条件的点
的坐标.![]()
科目:高中数学 来源: 题型:解答题
已知圆
的方程为
,直线![]()
,设点
.
(1)若点
在圆
外,试判断直线
与圆
的位置关系;
(2)若点
在圆
上,且
,
,过点
作直线
分别交圆
于
两点,且直线
和
的斜率互为相反数;
① 若直线
过点
,求
的值;
② 试问:不论直线
的斜率怎样变化,直线
的斜率是否为定值?若是,求出该定值;若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com