科目:高中数学 来源: 题型:解答题
(本小题满分12分) 已知圆,点,直线.
(1) 求与圆相切,且与直线垂直的直线方程;
(2) 在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上任一点,都有为一常数,试求所有满足条件的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
将一颗质地均匀的正方体骰子(六个面的点数分别为1、2、3、4、5、6)先后抛两次,将得到的点数分别记为a,b.
(1)求满足条件a+b≥9的概率;
(2)求直线ax+by+5=0与x2+y2=1相切的概率
(3)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,曲线的参数方程为,(其中为参数,),在极坐标系(以坐标原点为极点,以轴非负半轴为极轴)中,曲线的极坐标方程为.
(1)把曲线和的方程化为直角坐标方程;
(2)若曲线上恰有三个点到曲线的距离为,求曲线的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线C:
(1)当为何值时,曲线C表示圆;
(2)在(1)的条件下,若曲线C与直线交于M、N两点,且,求的值.
(3)在(1)的条件下,设直线与圆交于,两点,是否存在实数,使得以为直径的圆过原点,若存在,求出实数的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com