精英家教网 > 高中数学 > 题目详情
从8名学生中,男生选2人,女生选1人,分别参加语、数、英三科比赛,共有90种不同方案,那么男、女生人数是(  )
A、2男6女B、6男2女
C、5男3女D、3男5女
考点:计数原理的应用
专题:排列组合
分析:首先设有男生x人,则女生有8-x人,根据题意列出方程,解得即可.
解答: 解:设有男生x人,则女生有8-x人;
根据题意有Cx2C8-x1×A33=90,
即x(x-1)(8-x)=30=3×2×5,
解得x=3,8-x=5,
故选:D.
点评:本题考查排列组合数的实际应用,是一个综合题,解题时思考方法同一般的排列组合一样,根据题意列出等式,得到结果.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有以下命题:
①命题“?x∈R,x2-x-2≥0”的否定是:“?x∈R,x2-x-2<0”;
②在△ABC中,角A,B的对边分别是a,b.p:A>30°?sinA>
1
2
;q:a>b?A>B,则p∧q为真;
③命题“若x≥2且y≥1,则x+y≥3”的否命题为“若x<2且y<1,则x+y<3”
④函数f(x)=x 
1
2
-(
1
3
x在其定义域内只有一个零点且该零点在区间(
1
3
1
2
)内;
其中正确的命题有(  )
A、①③④B、②③
C、①④D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是以2为首项,1为公差的等差数列,{bn}是以1为首项,2为公比的等比数列,则ba1+ba2+…+ba6等于(  )
A、78B、84
C、124D、126

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在R上的奇函数,对任意x∈R总有f(x+
3
2
)=-f(x),则f(-
9
2
)的值为(  )
A、0
B、3
C、
3
2
D、-
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y=
1
8
x2,则以抛物线的焦点F为一个焦点,且离心率为
2
的双曲线E的标准方程为(  )
A、
x2
2
-
y2
2
=1
B、
y2
2
-
x2
2
=1
C、
y2
1
2
-
x2
1
2
=1
D、
x2
1
2
-
y2
1
2
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边边长分别为a,b,c,且
cosA
cosB
=
b
a
=
3
4

(1)判断△ABC的形状;  
(2)若c=15,则△ABC的面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ex(ax2-7x+13),其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与直线l:2ex-y+e=0平行.
(1)确定a的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(ωx+φ)(ω>0,0<φ<
π
2
)的最小正周期为π,且其图象经过点(
π
3
,0).
(1)求函数f(x)的解析式;
(2)若函数g(x)=f(
x
2
+
π
12
),α,β∈(0,π),且g(α)=1,g(β)=
3
2
4
,求g(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC的三个内角分别为A,B,C,cosA=
1
3
,cosB=
2
2
3
.CD是∠ACB的角平分线.
(1)求角C的大小;
(2)当CD=8
2
-4,求AC,BC的长.

查看答案和解析>>

同步练习册答案