精英家教网 > 高中数学 > 题目详情
如图,△ABC的三个内角分别为A,B,C,cosA=
1
3
,cosB=
2
2
3
.CD是∠ACB的角平分线.
(1)求角C的大小;
(2)当CD=8
2
-4,求AC,BC的长.
考点:余弦定理,正弦定理
专题:三角函数的求值,解三角形
分析:(1)依题意,可求得cos2A+cos2B=1,于是可得sinA=cosB,即A、B互余,从而得角C的大小;
(2)当CD=8
2
-4时,利用正弦定理可求得AD=
CDsin∠ACD
sinA
=6
2
-3,BD=
CD×sin∠BCD
sinB
=24-6
2
,从而可求AC,BC的长.
解答: 解:(1)∵cosA>0,cosB>0,且A,B是,△ABC的内角,
∴0<A<
π
2
,0<B<
π
2

又cos2A+cos2B=
1
9
+
8
9
=1,
∴sin2A=cos2B,sinA=cosB=sin(
π
2
-B),
∴A+B=
π
2
,故C=
π
2

(2)由(1)知,C=
π
2
,∴∠DCB=
π
4

又sinA=cosB=
2
2
3
,sinB=cosA=
1
3

在△ABC中,由正弦定理得:AD=
CDsin∠ACD
sinA
=
(8
2
-4)×
2
2
2
2
3
=6
2
-3,
 在△ABC中,由正弦定理得:BD=
CD×sin∠BCD
sinB
=
(8
2
-4)×
2
2
1
3
=24-6
2

∴AB=AD+BD=6
2
-3+24-6
2
=21,
∴AC=ABsinB=21×
1
3
=7,
DC=AB×sinA=21×
2
2
3
=14
2
点评:本题考查同角三角函数间的关系,着重考查正弦定理与余弦定理的综合运用,考查推理、运算与求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从8名学生中,男生选2人,女生选1人,分别参加语、数、英三科比赛,共有90种不同方案,那么男、女生人数是(  )
A、2男6女B、6男2女
C、5男3女D、3男5女

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|ax-2|+|ax-a|(a>0).
(I)当a=1时,求f(x)≥x的解集;
(Ⅱ)若不存在实数x,使f(x)<3成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆C:(x-m)2+(y-2m)2=m2(m>0)
(Ⅰ)当m=2时,求经过原点且与圆C相切的直线l的方程;
(Ⅱ)若圆C与圆E:(x-3)2+y2=16内切,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解甲、乙两个班级某次考试的数学成绩,从甲、乙两个班级中分别随机抽取5名学生的成绩(单位:分)作样本,如图是样本的茎叶图:
(1)分别计算甲、乙两个班级数学成绩的样本的平均数;
(2)从甲、乙两个班级数学成绩的样本中各随机抽取1名同学的数学成绩,求抽到的成绩之差的绝对值不低于20的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
3(t+1)
2
x2+3tx+1(t∈R).
(Ⅰ)若函数f(x)在点(2,f(2))处的切线与直线y=9x-2平行,求t的值;
(Ⅱ)设函数g(x)=f′(x)+3lnx-3x2,求函数g(x)的单调区间;
(Ⅲ)若存在x0∈(0,2),使得f(x0)是f(x)在x∈[0,2]上的最小值,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2x+2sinxsin(x+
π
2
),
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线 f(x)=e3x在点(0,1)处的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足
x+y≤1
x≥0
y≥0
,则z=2x-y的最大值是
 

查看答案和解析>>

同步练习册答案