精英家教网 > 高中数学 > 题目详情
已知n∈N*,数列{an}的首项a1=1,函数f(x)=
1
3
x3-(an+n+3)x2+2(2n+6)an
x,若x=an+1是f(x)的极小值点,则数列{an}的通项公式为(  )
A、an=
1,n=1
2n+4,n≥2
B、an=2n-1
C、an=
1    n=1
2n   n≥2
D、an=
1    n=1
2n+1  n≥2
考点:数列的概念及简单表示法,利用导数研究函数的极值
专题:等差数列与等比数列
分析:f'(x)=x2-2(an+n+3)x+2(2n+6)an=(x-2an)[x-(2n+6)],当2an<2n+6时,极小值点为an+1=2n+6;当2an>2n+6时,极小值点为an+1=2an,比较2an与2n+6的大小即可得出.
解答: 解:f'(x)=x2-2(an+n+3)x+2(2n+6)an=(x-2an)[x-(2n+6)]
当2an<2n+6时,极小值点为an+1=2n+6
当2an>2n+6时,极小值点为an+1=2an
比较2an与2n+6的大小:
当n=1时2n+6=8>2a1=2,∴a2=8=23
当n=2时2n+6=10<2a2=16,∴a3=2a2=24
当n=3时2n+6=12<2a3=32,∴a4=2a3=25
用数学归纳法可证明:当n≥2时,2an>2n+6.
an=
1    n=1
2n+1  n≥2

故选:D
点评:本题考查函数极值点概念和求法、数列的概念、等差等比数列的判断,以及分类讨论的思想和代数推理的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数中,满足f(xy)=f(x)+f(y)的单调递增函数是(  )
A、f(x)=log2x
B、f(x)=x2
C、f(x)=2x
D、f(x)=log
1
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式ax2+bx+c<0的解集为{x|x<0或x>β},(α<β<0),则不等式cx2-bx+a>0的解集为(  )
A、{x|-
1
β
<x<-
1
α
}
B、{x|
1
β
<x<
1
α
}
C、{x|-
1
α
<x<-
1
β
}
D、{x|x<-
1
α
或x>-
1
β
}

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
BC
=
a
CA
=
b
AB
=
c
,当(
a
b
):(
c
b
)(
a
c
)=2:1:3时,求△ABC的三个内角(结果精确到1°)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知由长方体截去一个棱锥所得几何体的三视图如图所示,则该几何体的体积为(  )
A、16
B、
40
3
C、
32
3
D、
16
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-
1
2
x+c(a、c∈R),满足f(1)=0,且f(x)≥0在x∈R时恒成立.
(1)求a、c的值;
(2)若h(x)=
3
4
x2-bx+
b
2
-
1
4
,解不等式f(x)+h(x)<0;
(3)是否存在实数m,使函数g(x)=f(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

A、B为x、y轴上两动点,|AB|=10,点M为AB中点,已知点P(10,0),C(6,3),则
1
2
|PM|+|CM|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

营养学家建议:高中生每天的蛋白质摄入量控制在[60,90](单位:克),脂肪的摄入量控制在[18,27](单位:克).某学校食堂提供的伙食以食物A和食物B为主,1千克食物A含蛋白质60克,含脂肪9克,售价20元;1千克食物B含蛋白质30克,含脂肪27克,售价15元.
(Ⅰ)如果某学生只吃食物A,他的伙食是否符合营养学家的建议,并说明理由;
(Ⅱ)为了花费最低且符合营养学家的建议,学生需要每天同时食用食物A和食物B各多少千克.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列选项错误的是(  )
A、命题“?x0∈R,x02+3x0+6≤0”的否定是“?x∈R,x2+3x+6>0“
B、命题“所有的等边三角形都是等腰三角形”的否定是“有一个等边三角形不是等腰三角形”
C、命题“若|x|>0,则x2>0”的逆命题是“若x2>0,则|x|>0”
D、命题“若x>0,则x2>0”的否命题是“若x>0,则x2≤0”

查看答案和解析>>

同步练习册答案